946 resultados para muscle injuries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Respiratory difficulties in athletes are common, especially in adolescents, even in the absence of exercise-induced bronchoconstriction. Immaturity of the respiratory muscles coupling at high respiratory rates could be a potential mechanism. Whether respiratory muscle training (RMT) can positively influence it is yet unknown. Goal. We investigate the effects of RMT on ventilation and performance parameters in adolescent athletes and hypothesize that RMT will enhance respiratory capacity. Methods. 12 healthy subjects (8 male, 4 female, 17±0.5 years) from a sports/study high school class, competitively involved in various sports (minimum of 10 hours per week) underwent respiratory function testing, maximal minute ventilation (MMV) measurements and a maximal treadmill incremental test with VO2max and ventilatory thresholds (VT1 and VT2) determination. They then underwent one month of RMT (4 times/week) using a eucapnic hyperventilation device, with an incremental training program. The same tests were repeated after RMT. Results. Subjects completed 14.8 sessions of RMT, with an increase in total ventilation per session of 211±29% during training. Borg scale evaluation of the RMT session was unchanged or reduced in all subjects, despite an increase in total respiratory work. No changes (p>0.05) were observed pre/post RMT in VO2max (53.4±7.5 vs 51.6±7.7 ml/kg/min), VT2 (14.4±1.4 vs 14.0±1.1 km/h) or Speed max at end of test (16.1±1.7 vs 15.8±1.7 km/h). MVV increased by 9.2% (176.7±36.9 vs 192.9±32.6 l/min, p<0.001) and FVC by 3.3% (6.70±0.75 vs 4.85±0.76 litres, p<0.05). Subjective evaluation of respiratory sensations during exercise and daily living were also improved. Conclusions. RMT improves MMV and FVC in adolescent athletes, along with important subjective respiratory benefits, although no changes are seen in treadmill maximal performance tests and VO2max measurements. RMT can be easily performed in adolescent without side effects, with a potential for improvement in training capacity and overall well-being.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To determine 1) rates of needlestick and sharps injuries (NSSIs) not reported to occupational health services, 2) reasons for underreporting and 3) awareness of reporting procedures in a Swiss university hospital. MATERIALS AND METHODS: We surveyed 6,367 employees having close clinical contact with patients or patient specimens. The questionnaire covered age, sex, occupation, years spent in occupation, history of NSSI during the preceding twelve months, NSSI reporting, barriers to reporting and knowledge of reporting procedures. RESULTS: 2,778 questionnaires were returned (43.6%) of which 2,691 were suitable for analysis. 260/2,691 employees (9.7%) had sustained at least one NSSI during the preceding twelve months. NSSIs were more frequent among nurses (49.2%) and doctors performing invasive procedures (IPs) (36.9%). NSSI rate by occupation was 8.6% for nurses, 19% for doctors and 1.3% for domestic staff. Of the injured respondents, 73.1% reported all events, 12.3% some and 14.6% none. 42.7% of doctors performing invasive procedures (IPs) underreported NSSIs and represented 58.6% of underreported events. Estimation that transmission risk was low (87.1%) and perceived lack of time (34.3%) were the most common reasons for non-reporting. Regarding reporting procedures, 80.1% of respondents knew to contact occupational health services. CONCLUSION: Doctors performing IPs have high rates of NSSI and, through self-assessment that infection transmission risk is low or perceived lack of time, high rates of underreporting. If individual risk analyses underestimate the real risk, such underreporting represents a missed opportunity for post-exposure prophylaxis and identification of hazardous procedures. Doctors' training in NSSI reporting merits re-evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of vascular endothelial growth factor (VEGF) has become the standard of care for patients presenting with wet age-related macular degeneration. However, monthly intravitreal injections are required for optimal efficacy. We have previously shown that electroporation enabled ciliary muscle gene transfer results in sustained protein secretion into the vitreous for up to 9 months. Here, we evaluated the long-term efficacy of ciliary muscle gene transfer of three soluble VEGF receptor-1 (sFlt-1) variants in a rat model of laser-induced choroidal neovascularization (CNV). All three sFlt-1 variants significantly diminished vascular leakage and neovascularization as measured by fluorescein angiography (FA) and flatmount choroid at 3 weeks. FA and infracyanine angiography demonstrated that inhibition of CNV was maintained for up to 6 months after gene transfer of the two shortest sFlt-1 variants. Throughout, clinical efficacy was correlated with sustained VEGF neutralization in the ocular media. Interestingly, treatment with sFlt-1 induced a 50% downregulation of VEGF messenger RNA levels in the retinal pigment epithelium and the choroid. We demonstrate for the first time that non-viral gene transfer can achieve a long-term reduction of VEGF levels and efficacy in the treatment of CNV.Gene Therapy advance online publication, 27 June 2013; doi:10.1038/gt.2013.36.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Number of deaths and age-standardised death rates by type of injury for the following regions and year of occurrence:Republic of Ireland 1982, 1983, 1995-2004Northern Ireland 1982, 1983, 1995-2002England 1996-2003Scotland 1982, 1983, 1995-2004Wales 1996-2003

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Number of hospital discharges and age-standardised discharge rates for emergency hospital admissions for injury by sex and type of injury for the following regions and year:Republic of Ireland 2006Northern Ireland 2006England 2006/07Scotland 2006/07Wales 2006 Numbers and rates are based on official hospital statistics from each region. All regions use International Classification of Disease (ICD) version 10 for hospital discharges in these years. Only emergency inpatient hospital spells with an ICD 10 code in the range S000-T739, T750-T759, T780-T789 (in any diagnostic position) and an ICD10 external cause code in the range V01-Y36 (in any diagnostic position) were included. A hospital spell is an unbroken period of time that a person spends as an inpatient in a hospital. The person may change consultant and/or specialty during a spell but is counted only once. See http://www.injuryobservatory.net/analysis-of-inpatient-admissions-data-f... for more details.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral arterial disease (PAD) is a common disease with increasing prevalence, presenting with impaired walking ability affecting patient's quality of life. PAD epidemiology is known, however, mechanisms underlying functional muscle impairment remain unclear. Using a mouse PAD model, aim of this study was to assess muscle adaptive responses during early (1 week) and late (5 weeks) disease stages. Unilateral hindlimb ischemia was induced in ApoE(-/-) mice by iliac artery ligation. Ischemic limb perfusion and oxygenation (Laser Doppler imaging, transcutaneous oxygen pressure assessments) significantly decreased during early and late stage compared to pre-ischemia, however, values were significantly higher during late versus early phase. Number of arterioles and arteriogenesis-linked gene expression increased at later stage. Walking ability, evaluated by forced and voluntary walking tests, remained significantly decreased both at early and late phase without any significant improvement. Muscle glucose uptake ([18F]fluorodeoxyglucose positron emission tomography) significantly increased during early ischemia decreasing at later stage. Gene expression analysis showed significant shift in muscle M1/M2 macrophages and Th1/Th2 T cells balance toward pro-inflammatory phenotype during early ischemia; later, inflammatory state returned to neutrality. Muscular M1/M2 shift inhibition by a statin prevented impaired walking ability in early ischemia. High-energy phosphate metabolism remained unchanged (31-Phosphorus magnetic resonance spectroscopy). Results show that rapid transient muscular inflammation contributes to impaired walking capacity while increased glucose uptake may be a compensatory mechanisms preserving immediate limb viability during early ischemia in a mouse PAD model. With time, increased ischemic limb perfusion and oxygenation assure muscle viability although not sufficiently to improve walking impairment. Subsequent decreased muscle glucose uptake may partly contribute to chronic walking impairment. Early inflammation inhibition and/or late muscle glucose impairment prevention are promising strategies for PAD management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Spectral frequencies of the surface electromyogram (sEMG) increase with contraction force, but debate still exists on whether this increase is affected by various methodological and anatomical factors. This study aimed to investigate the influence of inter-electrode distance (IED) and contraction modality (step-wise vs. ramp) on the changes in spectral frequencies with increasing contraction strength for the vastus lateralis (VL) and vastus medialis (VM) muscles. METHODS: Twenty healthy male volunteers were assessed for isometric sEMG activity of the VM and VL, with the knee at 90° flexion. Subjects performed isometric ramp contractions in knee extension (6-s duration) with the force gradually increasing from 0 to 80 % MVC. Also, subjects performed 4-s step-wise isometric contractions at 10, 20, 30, 40, 50, 60, 70, and 80 % MVC. Interference sEMG signals were recorded simultaneously at different IEDs: 10, 20, 30, and 50 mm. The mean (F mean) and median (F median) frequencies and root mean square (RMS) of sEMG signals were calculated. RESULTS: For all IEDs, contraction modalities, and muscles tested, spectral frequencies increased significantly with increasing level of force up to 50-60 % MVC force. Spectral indexes increased systematically as IED was decreased. The sensitivity of spectral frequencies to changes in contraction force was independent of IED. The behaviour of spectral indexes with increasing contraction force was similar for step-wise and ramp contractions. CONCLUSIONS: In the VL and VM muscles, it is highly unlikely that a particular inter-electrode distance or contraction modality could have prevented the observation of the full extent of the increase in spectral frequencies with increasing force level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes. In this study, we show that transfection of the ciliary muscle by plasmids encoding for three different variants of the p55 TNF-alpha soluble receptor, using electrotransfer, resulted in sustained intraocular secretion of the encoded proteins, without any detection in the serum. In the eye, even the shorter monomeric variant resulted in efficient neutralization of TNF-alpha in a rat experimental model of endotoxin-induced uveitis, as long as 3 months after transfection. A subsequent downregulation of interleukin (IL)-6 and iNOS and upregulation of IL-10 expression was observed together with a decreased rolling of inflammatory cells in anterior segment vessels and reduced infiltration within the ocular tissues. Our results indicate that using a nonviral gene therapy strategy, the local self-production of monomeric TNF-alpha soluble receptors induces a local immunomodulation enabling the control of intraocular inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.