761 resultados para movement ecology
Resumo:
Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity.
Resumo:
Lake Banyoles is the second largest lake in the Iberian Peninsula and due to this relative uniqueness, its peculiar geological origin, and its considerable age attracted the early attention of the late Professor Ramon Margalef. One of the first papers by Margalef was on the biota of Lake Banyoles and two of the first four Ph.D. theses that he supervised were about the limnology of this lake. Unfortunately, the uniqueness of this lake also implied that it was the first place of introduction into the Iberian Peninsula of several exotic fish species, early in the XXth Century and nowadays the lake fish assemblage is dominated by invasive species, and some native ones have been extirpated. Although the limnological studies in Lake Banyoles were pioneering within the Iberian Peninsula, studies on fish ecology of the lake did not start until 1989. Thereafter, four Ph.D. theses have been completed on different aspects of the fish assemblages of Lake Banyoles. The aim of this paper is to provide a short overview of this research, largely brought about by the considerable limnological information previously available for this lake, thanks to the insightful, pioneering work of Professor Margalef
Resumo:
L'ecologia del paisatge neix en una vinculació ben estreta amb la geografia i viu un espectacular desenvolupament a partir de la segona meitat del segle XX. En l’actualitat, és una perspectiva científica transdisciplinària, consolidada i reconeguda, que intenta comprendre i ajudar a resoldre els principals reptes ambientals contemporanis pel que fa a la conservació del patrimoni natural i cultural. En aquestes pàgines, es repassa de forma sintètica els conceptes clau i els mètodes, eminentment quantitatius, emprats per l’ecologia del paisatge per analitzar la situació i l’evolució dels paisatges
Resumo:
Diversity and aspects of the ecology of social wasps (Vespidae, Polistinae) in Central Amazonian "terra firme" forest. The knowledge of social wasp richness and biology in the Amazonian region is considered insufficient. Although the Amazonas state is the largest in the region, until now only two brief surveys were conducted there. Considering that the systematic inventory of an area is the first step towards its conservation and wise use, this study presents faunal data on social wasp diversity in a 25 km² area of "terra firme" (upland forest) at the Ducke Reserve, Manaus, Amazonas, Brazil. Wasps were collected in the understory, following a protocol of three collectors walking along 60 trails 1,000 m in extension for 16 days between August and October 2010. Methods used were active search of individuals with entomological nets and nest collecting. Fifty-eight species of social wasps, allocated in 13 genera, were recorded; 67% of the collected species belong to Polybia, Agelaia and Mischocyttarus; other genera were represented by only four species or less. The most frequent species in active searches were Agelaia fulvofasciata (DeGeer, 1773), Agelaia testacea (Fabricius, 1804) and Angiopolybia pallens (Lepeletier, 1836). Twelve species were collected in nests. Prior to this study, 65 Polistinae species were deposited at the INPA Collection. Collecting in the study grid, an area not previously sampled for wasps, resulted in an increase of 25% species, and species richness was 86. According to the results, there is evidence that the diversity of social wasps at the Ducke Reserve is even higher, making it one of the richest areas in the Brazilian Amazonia.
Resumo:
Purpose of review: An overview of recent advances in structural neuroimaging and their impact on movement disorders research is presented. Recent findings: Novel developments in computational neuroanatomy and improvements in magnetic resonance image quality have brought further insight into the pathophysiology of movement disorders. Sophisticated automated techniques allow for sensitive and reliable in-vivo differentiation of phenotype/genotype related traits and their interaction even at presymptomatic stages of disease. Summary: Voxel-based morphometry consistently demonstrates well defined patterns of brain structure changes in movement disorders. Advanced stages of idiopathic Parkinson's disease are characterized by grey matter volume decreases in basal ganglia. Depending on the presence of cognitive impairment, volume changes are reported in widespread cortical and limbic areas. Atypical Parkinsonian syndromes still pose a challenge for accurate morphometry-based classification, especially in early stages of disease progression. Essential tremor has been mainly associated with thalamic and cerebellar changes. Studies on preclinical Huntington's disease show progressive loss of tissue in the caudate and cortical thinning related to distinct motor and cognitive phenotypes. Basal ganglia volume in primary dystonia reveals an interaction between genotype and phenotype such that brain structure changes are modulated by the presence of symptoms under the influence of genetic factors. Tics in Tourette's syndrome correlate with brain structure changes in limbic, motor and associative fronto-striato-parietal circuits. Computational neuroanatomy provides useful tools for in-vivo assessment of brain structure in movement disorders, allowing for accurate classification in early clinical stages as well as for monitoring therapy effects and/or disease progression.
Resumo:
L'étude du mouvement des organismes est essentiel pour la compréhension du fonctionnement des écosystèmes. Dans le cas des écosystèmes marins exploités, cela amène à s'intéresser aux stratégies spatiales des pêcheurs. L'une des approches les plus utilisées pour la modélisation du mouvement des prédateurs supé- rieurs est la marche aléatoire de Lévy. Une marche aléatoire est un modèle mathématique composé par des déplacements aléatoires. Dans le cas de Lévy, les longueurs des déplacements suivent une loi stable de Lévy. Dans ce cas également, les longueurs, lorsqu'elles tendent vers l'in ni (in praxy lorsqu'elles sont grandes, grandes par rapport à la médiane ou au troisième quartile par exemple), suivent une loi puissance caractéristique du type de marche aléatoire de Lévy (Cauchy, Brownien ou strictement Lévy). Dans la pratique, outre que cette propriété est utilisée de façon réciproque sans fondement théorique, les queues de distribution, notion par ailleurs imprécise, sont modélisée par des lois puissances sans que soient discutées la sensibilité des résultats à la dé nition de la queue de distribution, et la pertinence des tests d'ajustement et des critères de choix de modèle. Dans ce travail portant sur les déplacements observés de trois bateaux de pêche à l'anchois du Pérou, plusieurs modèles de queues de distribution (log-normal, exponentiel, exponentiel tronqué, puissance et puissance tronqué) ont été comparés ainsi que deux dé nitions possible de queues de distribution (de la médiane à l'in ni ou du troisième quartile à l'in ni). Au plan des critères et tests statistiques utilisés, les lois tronquées (exponentielle et puissance) sont apparues les meilleures. Elles intègrent en outre le fait que, dans la pratique, les bateaux ne dépassent pas une certaine limite de longueur de déplacement. Le choix de modèle est apparu sensible au choix du début de la queue de distribution : pour un même bateau, le choix d'un modèle tronqué ou l'autre dépend de l'intervalle des valeurs de la variable sur lequel le modèle est ajusté. Pour nir, nous discutons les implications en écologie des résultats de ce travail.
Resumo:
This work provides a contribution to a better understanding of the trophic ecology of important predators in the Northern Humboldt Current System, the jack mackerel (Trachurus murphyi), the chub mackerel (Scomber japonicus) and the jumbo squid (Dosidicus gigas) by the characterization of the highly variable feeding patterns of these species at different spatiotemporal scales. We provided new knowledge on the comparative trophic behaviour of these species, defined as opportunistic in previous investigations. For that purpose we applied a variety of statistical methods to an extensive dataset of 27,188 non-empty stomachs. We defined the spatial organization of the forage fauna of these predators and documented changes in prey composition according to predators’ size and spatiotemporal features of environment. Our results highligh the key role played by the dissolved oxygen. We also deciphered an important paradox on the jumbo squid diet: why do they hardly forage on the huge anchovy (Engraulis ringens) biomass distributed of coastal Peru? We showed that the shallow oxygen minimum zone present off coastal Peru could hamper the co-occurrence of jumbo squids and anchovies. In addition, we proposed a conceptual model on jumbo squid trophic ecology including the ontogenetic cycle, oxygen and prey availability. Moreover we showed that the trophic behaviour of jack mackerel and chub mackerel is adapted to forage on more accessible species such as for example the squat lobster Pleurocondes monodon and Zoea larvae. Besides, both predators present a trophic overlap. But jack mackerel was not as oracious as chub mackerel, contradictorily to what was observed by others authors. Fish diet presented a high spatiotemporal variability, and the shelf break appeared as a strong biogeographical frontier. Diet composition of our fish predators was not necessarily a consistent indicator of changes in prey biomass. El Niño events had a weak effect on the stomach fullness and diet composition of chub mackerel and jack mackerel. Moreover, decadal changes in diet diversity challenged the classic paradigm of positive correlation between species richness and temperature. Finally, the global patterns that we described in this work, illustrated the opportunistic foraging behaviour, life strategies and the high degree of plasticity of these species. Such behaviour allows adaptation to changes in the environment.
Resumo:
Social organisms exhibit conspicuous intraspecific variation in all facets of their social organization. A prominent example of such variation in the highly eusocial Hymenoptera is differences in the number of reproductive queens per colony, Differences in queen number in ants are associated with differences in a host of reproductive and social traits, including queen phenotype and breeding strategy, mode of colony reproduction, and pattern of sex allocation. We examine the causes and consequences of changes in colony queen number and associated traits using the fire ant Solenopsis invicta as a principal model. Ecological constraints on mode of colony founding may act as important selective forces causing the evolution of queen number in this and many other ants, with social organization generally perpetuated across generations by means of the social environment molding appropriate queen phenotypes and reproductive strategies. Shifts in colony queen number have profound effects on genetic structure within nests and may also influence genetic structure at higher levels (aggregations of nests or local demes) because of the association of queen number with particular mating and dispersal habits. Divergence of breeding habits between populations with different social organizations has the potential to promote genetic differentiation between these social variants. Thus, evolution of social organization can be important in generating intrinsic selective regimes that channel subsequent social evolution and in initiating the development of significant population genetic structure, including barriers to gene flow important in cladogenesis.
Resumo:
It has been known for some time that different arbuscular mycorrhizal fungal (AMF) taxa confer differences in plant growth. Although genetic variation within AMF species has been given less attention, it could potentially be an ecologically important source of variation. Ongoing studies on variability in AMF genes within Glomus intraradices indicate that at least for some genes, such as the BiP gene, sequence variability can be high, even in coding regions. This suggests that genetic variation within an AMF may not be selectively neutral. This clearly needs to be investigated in more detail for other coding regions of AMF genomes. Similarly, studies on AMF population genetics indicate high genetic variation in AMF populations, and a considerable amount of variation seen in phenotypes in the population can be attributed to genetic differences among the fungi. The existence of high within-species genetic variation could have important consequences for how investigations on AMF gene expression and function are conducted. Furthermore, studies of within-species genetic variability and how it affects variation in plant growth will help to identify at what level of precision ecological studies should be conducted to identify AMF in plant roots in the field. A population genetic approach to studying AMF genetic variability can also be useful for inoculum development. By knowing the amount of genetic variability in an AMF population, the maximum and minimum numbers of spores that will contain a given amount of genetic diversity can be estimated. This could be particularly useful for developing inoculum with high adaptability to different environments.
Resumo:
Summary
Resumo:
Fractal mathematics has been used to characterize water and solute transport in porous media and also to characterize and simulate porous media properties. The objective of this study was to evaluate the correlation between the soil infiltration parameters sorptivity (S) and time exponent (n) and the parameters dimension (D) and the Hurst exponent (H). For this purpose, ten horizontal columns with pure (either clay or loam) and heterogeneous porous media (clay and loam distributed in layers in the column) were simulated following the distribution of a deterministic Cantor Bar with fractal dimension H" 0.63. Horizontal water infiltration experiments were then simulated using Hydrus 2D software. The sorptivity (S) and time exponent (n) parameters of the Philip equation were estimated for each simulation, using the nonlinear regression procedure of the statistical software package SAS®. Sorptivity increased in the columns with the loam content, which was attributed to the relation of S with the capillary radius. The time exponent estimated by nonlinear regression was found to be less than the traditional value of 0.5. The fractal dimension estimated from the Hurst exponent was 17.5 % lower than the fractal dimension of the Cantor Bar used to generate the columns.