994 resultados para modern techniques
Resumo:
The authors presented a detailed summary of the geographical distribution, clinical and pathological aspects of human pulmonary dirofilariasis. Although benign, this zoonosis, of which Dirofilaria immitis is the major etiological agent, represents a medical problem since it produces symptoms which may be confused with neoplasia and thus may subject patients to unnecessary thoracic surgery. Of 229 cases cited in the literature, only 17 were reported in Brazil, despite the existence of highly favorable conditions for the transmission of this infection in man. Thus it may well be that this parasitic infection remains underdiagnosed. Finally, the importance of a differential diagnosis between dirofilariasis and pulmonary neoplasia is emphasized in cases where there is a solitary subpleural nodule ("coin lesion") present. In addition, the development and improvement of modern immunological diagnostic techniques are essential to distinguish this benign disease from other pathological conditions and thus avoid unneccessary surgery. These techniques may reveal the true prevalence of this parasitic infection in our environment.
Resumo:
The objective of the present study was to determine the prevalence of certain mycoplasma species, i.e., Mycoplasma hominis, Ureaplasma urealyticum and Mycoplasma penetrans, in urethral swabs from HIV-1 infected patients compared to swabs from a control group. Mycoplasmas were detected by routine culture techniques and by the Polymerase Chain Reaction (PCR) technique, using 16SrRNA generic primers of conserved region and Mycoplasma penetrans specific primers. The positivity rates obtained with the two methods were comparable. Nevertheless, PCR was more sensitive, while the culture techniques allowed the quantification of the isolates. The results showed no significant difference (p < 0.05) in positivity rates between the methods used for mycoplasma detection.
Resumo:
Paleoparasitology is the study of parasites found in archaeological material. The development of this field of research began with histological identification of helminth eggs in mummy tissues, analysis of coprolites, and recently through molecular biology. An approach to the history of paleoparasitology is reviewed in this paper, with special reference to the studies of ancient DNA identified in archaeological material.
Resumo:
Dissertation presented in fulfilment of the requirements for the Master’s degree in Conservation and Restoration
Resumo:
Coarse Grained Reconfigurable Architectures (CGRAs) are emerging as enabling platforms to meet the high performance demanded by modern applications (e.g. 4G, CDMA, etc.). Recently proposed CGRAs offer time-multiplexing and dynamic applications parallelism to enhance device utilization and reduce energy consumption at the cost of additional memory (up to 50% area of the overall platform). To reduce the memory overheads, novel CGRAs employ either statistical compression, intermediate compact representation, or multicasting. Each compaction technique has different properties (i.e. compression ratio, decompression time and decompression energy) and is best suited for a particular class of applications. However, existing research only deals with these methods separately. Moreover, they only analyze the compaction ratio and do not evaluate the associated energy overheads. To tackle these issues, we propose a polymorphic compression architecture that interleaves these techniques in a unique platform. The proposed architecture allows each application to take advantage of a separate compression/decompression hierarchy (consisting of various types and implementations of hardware/software decoders) tailored to its needs. Simulation results, using different applications (FFT, Matrix multiplication, and WLAN), reveal that the choice of compression hierarchy has a significant impact on compression ratio (up to 52%), decompression energy (up to 4 orders of magnitude), and configuration time (from 33 n to 1.5 s) for the tested applications. Synthesis results reveal that introducing adaptivity incurs negligible additional overheads (1%) compared to the overall platform area.
Resumo:
Accepted in 13th IEEE Symposium on Embedded Systems for Real-Time Multimedia (ESTIMedia 2015), Amsterdam, Netherlands.
Resumo:
Increased levels of plasma oxLDL, which is the oxidized fraction of Low Density Lipoprotein (LDL), are associated with atherosclerosis, an inflammatory disease, and the subsequent development of severe cardiovascular diseases that are today a major cause of death in modern countries. It is therefore important to find a reliable and fast assay to determine oxLDL in serum. A new immunosensor employing three monoclonal antibodies (mAbs) against oxLDL is proposed in this work as a quick and effective way to monitor oxLDL. The oxLDL was first employed to produce anti-oxLDL monoclonal antibodies by hybridoma cells that were previously obtained. The immunosensor was set-up by selfassembling cysteamine (Cyst) on a gold (Au) layer (4 mm diameter) of a disposable screen-printed electrode. Three mAbs were allowed to react with N-hydroxysuccinimide (NHS) and ethyl(dimethylaminopropyl)carbodiimide (EDAC), and subsequently incubated in the Au/Cys. Albumin from bovine serum (BSA) was immobilized further to ensure that other molecules apart from oxLDL could not bind to the electrode surface. All steps were followed by various characterization techniques such as electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The analytical operation of the immunosensor was obtained by incubating the sensing layer of the device in oxLDL for 15 minutes, prior to EIS and SWV. This was done by using standard oxLDL solutions prepared in foetal calf serum, in order to simulate patient's plasma with circulating oxLDL. A sensitive response was observed from 0.5 to 18.0 mg mL 1 . The device was successfully applied to determine the oxLDL fraction in real serum, without prior dilution or necessary chemical treatment. The use of multiple monoclonal antibodies on a biosensing platform seemed to be a successful approach to produce a specific response towards a complex multi-analyte target, correlating well with the level of oxLDL within atherosclerosis disease, in a simple, fast and cheap way.
Resumo:
Dissertation for the degree of Doctor of Philosophy in Physics
Resumo:
Chromoblastomycosis (CBM) is a chronic subcutaneous infection caused by several dematiaceous fungi. The most commonly etiological agent found in Brazil is Fonsecaea pedrosoi, which appears as thick walled, brownish colored cells with transverse and longitudinal division in the lesions, called "muriform cells". This disease is found worldwide but countries like Madagascar and Brazil have highest incidence. Diagnosis is made by clinical, direct and histopathologic examination and culture of specimens. Serological tests have been used to identify specific antibodies against Fonsecaea pedrosoi antigens, as well as immunotechniques have been used for CBM serological identification and diagnosis. In the present study double immunodiffusion (DID), counterimmunoelectrophoresis (CIE) and immunoenzymatic test (ELISA) have been used to evaluate humoral immune response in patients with CBM caused by F. pedrosoi. Metabolic antigen was used for immunoprecipitation tests (DID and CIE) while somatic antigen for ELISA. Our results demonstrated 53% sensitivity and 96% specificity for DID, while CIE presented 68% sensitivity and 90.5% specificity. ELISA demonstrated 78% sensibility and 83% specificity. Serological tests can be a useful tool to study different aspects of CBM, such as helping differential diagnosis, when culture of the pathogenic agent is impossible.