860 resultados para mitochondrial alterations
Resumo:
The shrews of the Sorer araneus group have undergone a spectacular chromosome evolution. The karyotype of Sorer granarius is generally considered ancestral to those of Sorer coronatus and S. araneus. However, a sequence of 777 base pairs of the cytochrome b gene of the mitochondrial DNA (mtDNA) produces a quite different picture: S. granarius is closely related to the populations of S. araneus from the Pyrenees and from the northwestern Alps, whereas S. coronatus and S. araneus from Italy and the southern Alps represent two well-separated lineages. It is suggested that mtDNA and chromosomal evolution are in this case largely independant processes. Whereas mtDNA haplotypes are closely linked to the geographical history of the populations, chromosomal mutations were probably transmitted from one population to another. Available data suggest that the impressive chromosome polymorphism of this group is quite a recent phenomenon.
Resumo:
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm). Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO) associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression of genes encoding mitochondrial proteins and FITM1. Several myokine genes, including IL-8 and CCL5, which are known to be constitutively expressed in human skm cells, were induced by PGC-1α.
Resumo:
In order to contribute to the debate about southern glacial refugia used by temperate species and more northern refugia used by boreal or cold-temperate species, we examined the phylogeography of a widespread snake species (Vipera berus) inhabiting Europe up to the Arctic Circle. The analysis of the mitochondrial DNA (mtDNA) sequence variation in 1043 bp of the cytochrome b gene and in 918 bp of the noncoding control region was performed with phylogenetic approaches. Our results suggest that both the duplicated control region and cytochrome b evolve at a similar rate in this species. Phylogenetic analysis showed that V. berus is divided into three major mitochondrial lineages, probably resulting from an Italian, a Balkan and a Northern (from France to Russia) refugial area in Eastern Europe, near the Carpathian Mountains. In addition, the Northern clade presents an important substructure, suggesting two sequential colonization events in Europe. First, the continent was colonized from the three main refugial areas mentioned above during the Lower-Mid Pleistocene. Second, recolonization of most of Europe most likely originated from several refugia located outside of the Mediterranean peninsulas (Carpathian region, east of the Carpathians, France and possibly Hungary) during the Mid-Late Pleistocene, while populations within the Italian and Balkan Peninsulas fluctuated only slightly in distribution range, with larger lowland populations during glacial times and with refugial mountain populations during interglacials, as in the present time. The phylogeographical structure revealed in our study suggests complex recolonization dynamics of the European continent by V. berus, characterized by latitudinal as well as altitudinal range shifts, driven by both climatic changes and competition with related species.
Resumo:
The developing cardiovascular system is known to operate normally in a hypoxic environment. However, the functional and ultrastructural recovery of embryonic/fetal hearts subjected to anoxia lasting as long as hypoxia/ischemia performed in adult animal models remains to be investigated. Isolated spontaneously beating hearts from Hamburger-Hamilton developmental stages 14 (14HH), 20HH, 24HH, and 27HH chick embryos were subjected in vitro to 30 or 60 min of anoxia followed by 60 min of reoxygenation. Morphological alterations and apoptosis were assessed histologically and by transmission electron microscopy. Anoxia provoked an initial tachycardia followed by bradycardia leading to complete cardiac arrest, except for in the youngest heart, which kept beating. Complete atrioventricular block appeared after 9.4 +/- 1.1, 1.7 +/- 0.2, and 1.6 +/- 0.3 min at stages 20HH, 24HH, and 27HH, respectively. At reoxygenation, sinoatrial activity resumed first in the form of irregular bursts, and one-to-one atrioventricular conduction resumed after 8, 17, and 35 min at stages 20HH, 24HH, and 27HH, respectively. Ventricular shortening recovered within 30 min except at stage 27HH. After 60 min of anoxia, stage 27HH hearts did not retrieve their baseline activity. Whatever the stage and anoxia duration, nuclear and mitochondrial swelling observed at the end of anoxia were reversible with no apoptosis. Thus the embryonic heart is able to fully recover from anoxia/reoxygenation although its anoxic tolerance declines with age. Changes in cellular homeostatic mechanisms rather than in energy metabolism may account for these developmental variations.
Resumo:
The bioenergetic status of cells is tightly regulated by the activity of cytosolic enzymes and mitochondrial ATP production. To adapt their metabolism to cellular energy needs, mitochondria have been shown to exhibit changes in their ionic composition as the result of changes in cytosolic ion concentrations. Individual mitochondria also exhibit spontaneous changes in their electrical potential without altering those of neighboring mitochondria. We recently reported that individual mitochondria of intact astrocytes exhibit spontaneous transient increases in their Na(+) concentration. Here, we investigated whether the concentration of other ionic species were involved during mitochondrial transients. By combining fluorescence imaging methods, we performed a multiparameter study of spontaneous mitochondrial transients in intact resting astrocytes. We show that mitochondria exhibit coincident changes in their Na(+) concentration, electrical potential, matrix pH and mitochondrial reactive oxygen species production during a mitochondrial transient without involving detectable changes in their Ca(2+) concentration. Using widefield and total internal reflection fluorescence imaging, we found evidence for localized transient decreases in the free Mg(2+) concentration accompanying mitochondrial Na(+) spikes that could indicate an associated local and transient enrichment in the ATP concentration. Therefore, we propose a sequential model for mitochondrial transients involving a localized ATP microdomain that triggers a Na(+)-mediated mitochondrial depolarization, transiently enhancing the activity of the mitochondrial respiratory chain. Our work provides a model describing ionic changes that could support a bidirectional cytosol-to-mitochondria ionic communication.
Resumo:
INTRODUCTION: In patients with multiple sclerosis (MS), conventional magnetic resonance imaging (MRI) provides only limited insights into the nature of brain damage with modest clinic-radiological correlation. In this study, we applied recent advances in MRI techniques to study brain microstructural alterations in early relapsing-remitting MS (RRMS) patients with minor deficits. Further, we investigated the potential use of advanced MRI to predict functional performances in these patients. METHODS: Brain relaxometry (T1, T2, T2*) and magnetization transfer MRI were performed at 3T in 36 RRMS patients and 18 healthy controls (HC). Multicontrast analysis was used to assess for microstructural alterations in normal-appearing (NA) tissue and lesions. A generalized linear model was computed to predict clinical performance in patients using multicontrast MRI data, conventional MRI measures as well as demographic and behavioral data as covariates. RESULTS: Quantitative T2 and T2* relaxometry were significantly increased in temporal normal-appearing white matter (NAWM) of patients compared to HC, indicating subtle microedema (P = 0.03 and 0.004). Furthermore, significant T1 and magnetization transfer ratio (MTR) variations in lesions (mean T1 z-score: 4.42 and mean MTR z-score: -4.09) suggested substantial tissue loss. Combinations of multicontrast and conventional MRI data significantly predicted cognitive fatigue (P = 0.01, Adj-R (2) = 0.4), attention (P = 0.0005, Adj-R (2) = 0.6), and disability (P = 0.03, Adj-R (2) = 0.4). CONCLUSION: Advanced MRI techniques at 3T, unraveled the nature of brain tissue damage in early MS and substantially improved clinical-radiological correlations in patients with minor deficits, as compared to conventional measures of disease.
Resumo:
This research aimed to characterize the tolerance to flooding and alterations in pectic and hemicellulose fractions from mesocotyl of maize tolerant to flooding when submitted to hypoxia. In order to characterize tolerance seeds from maize cultivars Saracura BRS-4154 and BR 107 tolerant and sensitive to low oxygen levels, respectively, were set to germinate. Plantlet survival was evaluated during five days after having been submitted to hypoxia. After fractionation with ammonium oxalate 0.5% (w/v) and KOH 2M and 4M, Saracura BRS-4154 cell wall was obtained from mesocotyl segments with different damage intensities caused by oxygen deficiency exposure. The cell wall fractions were analyzed by gel filtration and gas chromatography, and also by Infrared Spectrum with Fourrier Transformation (FTIR). The hypoxia period lasting three days or longer caused cell lysis and in advanced stages plant death. The gelic profile from pectic, hemicellulose 2M and 4M fractions from samples with translucid and constriction zone showed the appearance of low molecular weight compounds, similar to glucose. The main neutral sugars in pectic and hemicellulose fractions were arabinose, xilose and mannose. The FTIR spectrum showed a gradual decrease in pectic substances from mesocotyl with normal to translucid and constriction appearance respectively.
Resumo:
Wolfram syndrome is a progressive neurodegenerative disorder transmitted in an autosomal recessive mode. We report two Wolfram syndrome families harboring multiple deletions of mitochondrial DNA. The deletions reached percentages as high as 85-90% in affected tissues such as the central nervous system of one patient, while in other tissues from the same patient and from other members of the family, the percentages of deleted mitochondrial DNA genomes were only 1-10%. Recently, a Wolfram syndrome gene has been linked to markers on 4p16. In both families linkage between the disease locus and 4p16 markers gave a maximum multipoint lod score of 3.79 at theta = 0 (Pi<0.03) with respect to D4S431. In these families, the syndrome was caused by mutations in this nucleus-encoded gene which deleteriously interacts with the mitochondrial genome. This is the first evidence of the implication of both genomes in a recessive disease.
Resumo:
Wolfram syndrome is a progressive neurodegenerative disorder transmitted in an autosomal recessive mode. We report two Wolfram syndrome families harboring multiple deletions of mitochondrial DNA. The deletions reached percentages as high as 85-90% in affected tissues such as the central nervous system of one patient, while in other tissues from the same patient and from other members of the family, the percentages of deleted mitochondrial DNA genomes were only 1-10%. Recently, a Wolfram syndrome gene has been linked to markers on 4p16. In both families linkage between the disease locus and 4p16 markers gave a maximum multipoint lod score of 3.79 at theta = 0 (Pi<0.03) with respect to D4S431. In these families, the syndrome was caused by mutations in this nucleus-encoded gene which deleteriously interacts with the mitochondrial genome. This is the first evidence of the implication of both genomes in a recessive disease.
Resumo:
Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.
Resumo:
Background: Oxidative stress is a probable cause of aging and associated diseases. Reactive oxygen species (ROS) originate mainly from endogenous sources, namely the mitochondria. Methodology/Principal Findings: We analyzed the effect of aerobic metabolism on oxidative damage in Schizosaccharomyces pombe by global mapping of those genes that are required for growth on both respiratory-proficient media and hydrogen-peroxide-containing fermentable media. Out of a collection of approximately 2700 haploid yeast deletion mutants, 51 were sensitive to both conditions and 19 of these were related to mitochondrial function. Twelve deletion mutants lacked components of the electron transport chain. The growth defects of these mutants can be alleviated by the addition of antioxidants, which points to intrinsic oxidative stress as the origin of the phenotypes observed. These respiration-deficient mutants display elevated steady-state levels of ROS, probably due to enhanced electron leakage from their defective transport chains, which compromises the viability of chronologically-aged cells. Conclusion/Significance: Individual mitochondrial dysfunctions have often been described as the cause of diseases or aging, and our global characterization emphasizes the primacy of oxidative stress in the etiology of such processes.
Resumo:
BACKGROUND: Macrophage-mediated chronic inflammation is mechanistically linked to insulin resistance and atherosclerosis. Although arginase I is considered antiinflammatory, the role of arginase II (Arg-II) in macrophage function remains elusive. This study characterizes the role of Arg-II in macrophage inflammatory responses and its impact on obesity-linked type II diabetes mellitus and atherosclerosis. METHODS AND RESULTS: In human monocytes, silencing Arg-II decreases the monocytes' adhesion to endothelial cells and their production of proinflammatory mediators stimulated by oxidized low-density lipoprotein or lipopolysaccharides, as evaluated by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Macrophages differentiated from bone marrow cells of Arg-II-deficient (Arg-II(-/-)) mice express lower levels of lipopolysaccharide-induced proinflammatory mediators than do macrophages of wild-type mice. Importantly, reintroducing Arg-II cDNA into Arg-II(-/-) macrophages restores the inflammatory responses, with concomitant enhancement of mitochondrial reactive oxygen species. Scavenging of reactive oxygen species by N-acetylcysteine prevents the Arg-II-mediated inflammatory responses. Moreover, high-fat diet-induced infiltration of macrophages in various organs and expression of proinflammatory cytokines in adipose tissue are blunted in Arg-II(-/-) mice. Accordingly, Arg-II(-/-) mice reveal lower fasting blood glucose and improved glucose tolerance and insulin sensitivity. Furthermore, apolipoprotein E (ApoE)-deficient mice with Arg-II deficiency (ApoE(-/-)Arg-II(-/-)) display reduced lesion size with characteristics of stable plaques, such as decreased macrophage inflammation and necrotic core. In vivo adoptive transfer experiments reveal that fewer donor ApoE(-/-)Arg-II(-/-) than ApoE(-/-)Arg-II(+/+) monocytes infiltrate into the plaque of ApoE(-/-)Arg-II(+/+) mice. Conversely, recipient ApoE(-/-)Arg-II(-/-) mice accumulate fewer donor monocytes than do recipient ApoE(-/-)Arg-II(+/+) animals. CONCLUSIONS: Arg-II promotes macrophage proinflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis. Targeting Arg-II represents a potential therapeutic strategy in type II diabetes mellitus and atherosclerosis. (J Am Heart Assoc. 2012;1:e000992 doi: 10.1161/JAHA.112.000992.).
Resumo:
Background There is no evidence to date on whether transcriptional regulators are able to shift the balance between mitochondrial fusion and fission events through selective control of gene expression. Methodology/Principal Findings Here, we demonstrate that reduced mitochondrial size observed in knock-out mice for the transcriptional regulator PGC-1β is associated with a selective reduction in Mitofusin 2 (Mfn2) expression, a mitochondrial fusion protein. This decrease in Mfn2 is specific since expression of the remaining components of mitochondrial fusion and fission machinery were not affected. Furthermore, PGC-1β increases mitochondrial fusion and elongates mitochondrial tubules. This PGC-1β-induced elongation specifically requires Mfn2 as this process is absent in Mfn2-ablated cells. Finally, we show that PGC-1β increases Mfn2 promoter activity and transcription by coactivating the nuclear receptor Estrogen Related Receptor α (ERRα). Conclusions/Significance Taken together, our data reveal a novel mechanism by which mammalian cells control mitochondrial fusion. In addition, we describe a novel role of PGC-1β in mitochondrial physiology, namely the control of mitochondrial fusion mainly through Mfn2.
Resumo:
Astrocytes can experience large intracellular Na+ changes following the activation of the Na+-coupled glutamate transport. The present study investigated whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Mitochondrial Na+ (Na+(mit)) changes were monitored using the Na+-sensitive fluorescent probe CoroNa Red (CR) in intact primary cortical astrocytes, as opposed to the classical isolated mitochondria preparation. The mitochondrial localization and Na+ sensitivity of the dye were first verified and indicated that it can be safely used as a selective Na+(mit) indicator. We found by simultaneously monitoring cytosolic and mitochondrial Na+ using sodium-binding benzofuran isophthalate and CR, respectively, that glutamate-evoked cytosolic Na+ elevations are transmitted to mitochondria. The resting Na+(mit) concentration was estimated at 19.0 +/- 0.8 mM, reaching 30.1 +/- 1.2 mM during 200 microM glutamate application. Blockers of conductances potentially mediating Na+ entry (calcium uniporter, monovalent cation conductances, K+(ATP) channels) were not able to prevent the Na+(mit) response to glutamate. However, Ca2+ and its exchange with Na+ appear to play an important role in mediating mitochondrial Na+ entry as chelating intracellular Ca2+ with BAPTA or inhibiting Na+/Ca2+ exchanger with CGP-37157 diminished the Na+(mit) response. Moreover, intracellular Ca2+ increase achieved by photoactivation of caged Ca2+ also induced a Na+(mit) elevation. Inhibition of mitochondrial Na/H antiporter using ethylisopropyl-amiloride caused a steady increase in Na+(mit) without increasing cytosolic Na+, indicating that Na+ extrusion from mitochondria is mediated by these exchangers. Thus, mitochondria in intact astrocytes are equipped to efficiently sense cellular Na+ signals and to dynamically regulate their Na+ content.
Resumo:
The objective of this work was to evaluate, through a polymorphism in the ND5 gene of the bovine mitochondrial DNA, the frequency of Bos taurus indicus mtDNA individuals in a sample of Nellore purebred origin animals (n = 69) and crossbred animals originated from crosses of European sires and Nellore purebred origin females (n = 275). Only 2.26% (8/354) of the animals presented Bos taurus indicus mtDNA. The high frequency of Bos taurus taurus mtDNA in these animals can be a consequence of selection, once the animals studied are originated from selected lineages of high performance for meat production.