965 resultados para mesenchymal stem cell transplantation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objectives: Phototherapy with low intensity laser irradiation has shown to be effective in promoting the proliferation of different cells. The aim of this in vitro study was to evaluate the potential effect of laser phototherapy (660 nm) on human dental pulp stem cell (hDPSC) proliferation. Study Design/Materials and Methods: The hDPSC cell strain was used. Cells cultured under nutritional deficit (10% FBS) were either irradiated or not (control) using two different power settings (20 mW/6 seconds to 40 mW/3 seconds), with an InGaAIP diode laser. The cell growth was indirectly assessed by measuring the cell mitochondrial activity through the MTT reduction-based cytotoxicity assay. Results: The group irradiated with the 20 mW setting presented significantly higher MTT activity at 72 hours than the other two groups (negative control-10% FBSand lased 40 mW with 3 seconds exposure time). After 24 hours of the first irradiation, cultures grown under nutritional deficit (10% FBS) and irradiated presented significantly higher viable cells than the non-irradiated cultures grown under the same nutritional conditions. Conclusions: Under the conditions of this study it was possible to conclude that the cell strain hDPSC responds positively to laser phototherapy by improving the cell growth when cultured under nutritional deficit conditions. Thus, the association of laser phototherapy and hDPSC cells could be of importance for future tissue engineering and regenerative medicine. Moreover, it opens the possibility of using laser phototherapy for improving the cell growth of other types of stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal models of autoimmune disease and case reports of patients with these diseases who have been involved in bone marrow transplants have provided important data implicating the haemopoietic stem cell in rheumatic disease pathogenesis. Animal and human examples exist for both cure and transfer of rheumatoid arthritis, systemic lupus erythematosus (SLE) and other organ-specific diseases using allogeneic haemopoietic stem cell transplantation. This would suggest that the stem cell in these diseases is abnormal and could be cured by replacement of a normal stem cell although more in vitro data are required in this area. Given the morbidity and increased mortality in some patients with severe autoimmune diseases and the increasing safety of autologous haemopoietic stem cell transplantation (HSCT), pilot studies have been conducted using HSCT in rheumatic diseases. It is still unclear whether an autologous graft will cure these diseases but significant remissions have been obtained which have provided important data for the design of randomized trials of HSCT versus more conventional therapy. Several trials are now open to accrual under the auspices of the European Bone Marrow Transplant Group/European League Against Rheumatism (EBMT/EULAR) registry. Future clinical and laboratory research will need to document the abnormalities of the stem cell of a rheumatic patient because new therapies based on gene therapy or stem cell differentiation could be apllied to these diseases. With increasing safety of allogeneic HSCT it is not unreasonable to predict cure of some rheumatic diseases in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prospective studies have shown rapid engraftment using granulocyte-colony-stimulating factor-mobilized peripheral blood stem cells (G-PBSCs) for allogeneic transplantation, though the risks for graft-versus-host disease (GVHD) may be increased. It was hypothesized that the use of G-CSF to prime bone marrow (GBM) would allow rapid engraftment without increased risk for GVHD compared with G-PBSC. Patients were randomized to receive G-BM or G-PBSCs for allogeneic stem cell transplantation. The study was designed (beta < .8) to detect a difference in the incidence of chronic GVHD of 33% ( < .05). The plan was to recruit 100 patients and to conduct an interim analysis when the 6-month follow-up point was reached for the first 50 patients. Fifty-seven consecutive patients were recruited (G-BM, n = 28; G-PBSC, n = 29). Patients in the G-PBSC group received 3-fold more CD34(+) and 9-fold more CD3(+) cells. Median times to neutrophil (G-BM, 16 days; G-PBSC, 14 days; P < .1) and platelet engraftment (G-BM, 14 days; G-PBSC, 12 days; P < .1) were similar. The use of G-PBSC was associated with steroid refractory acute GVHD (G-BM, 0%; G-PBSC, 32%; P < .001), chronic GVHD (G-BM, 22%; G-PBSC, 80%; P < .02), and prolonged requirement for immunosuppressive therapy (G-BM, 173 days; G-PBSC, 680 days; P < .009). Survival was similar for the 2 groups. Compared with G-PBSC the use of G-BM resulted in comparable engraftment, reduced severity of acute GVHD, and less subsequent chronic GVHD. (Blood. 2001;98:3186-3191) (C) 2001 by The American Society of Hematology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HLA-B*4402 and B*4403 are naturally occurring MHC class I alleles that are both found at a hi,,h frequency in all human populations, and vet they only differ by one residue on the alpha2 helix (B*4402 Aspl56-->B*4403 Leu156) CTLs discriminate between HLA-B*4402 and B*4403, and these allotypes stimulate strong mutual allogeneic responses reflecting their known barrier to hemopoeitic stem cell transplantation. Although HLA-B*4402 and B*4403 share >95% of their peptide repertoire, B*4403 presents more unique peptides than B*4402, consistent with the stronger T cell alloreactivity observed toward B*4403 compared with B*4402. Crystal structures of B*4402 and B*4403 show how the polymorphisin at position 156 is completely buried and yet alters both the peptide and the heavy chain conformation, relaxing ligand selection by B*4403 compared with B*4402. Thus, the polymorphism between HLA-B*4402 and B 4403 modifies both peptide repertoire and T cell recognition, and is reflected lit the paradoxically powerful alloreactivity that occurs across this minimal mismatch. The findings suggest that these closely related class I genes are maintained lit diverse human populations through their differential impact on the selection of peptide ligands and the T cell repertoire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BRN2 transcription factor (POU3F2, N-Oct-3) has been implicated in development of the melanocytic lineage and in melanoma. Using a low calcium medium supplemented with stem cell factor, fibroblast growth factor-2, endothelin-3 and cholera toxin, we have established and partially characterised human melanocyte precursor cells, which are unpigmented, contain immature melanosomes and lack L-dihydroxyphenylalanine reactivity. Melanoblast cultures expressed high levels of BRN2 compared to melanocytes, which decreased to a level similar to that of melanocytes when cultured in medium that contained phorbol ester but lacked endothelin-3, stem cell factor and fibroblast growth factor-2. This decrease in BRN2 accompanied a positive L-dihydroxyphenylalanine reaction and induction of melanosome maturation consistent with melanoblast differentiation seen during development. Culture of primary melanocytes in low calcium medium supplemented with stem cell factor, fibroblast growth factor-2 and endothelin-3 caused an increase in BRN2 protein levels with a concomitant change to a melanoblast-like morphology. Synergism between any two of these growth factors was required for BRN2 protein induction, whereas all three factors were required to alter melanocyte morphology and for maximal BRN2 protein expression. These finding implicate BRN2 as an early marker of melanoblasts that may contribute to the hierarchy of melanocytic gene control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Pancreatic involvement by plasma cell neoplasms is an extremely rare event, with only 50 cases described in the literature. They can present as a primary solitary extramedullary plasmacytoma or plasmacytoma secondary to a plasma cell myeloma. Clinical manifestations are due to the presence of a pancreatic mass usually in the pancreas head, which causes extra-biliary obstruction and abdominal pain. METHODS: Abdominal imaging including CT scan or endoscopic ultrasound with fine-needle aspiration tissue sampling is essential for the initial diagnostic procedure. However, immunohistochemical analysis of the biopsy specimen or flow cytometry of the aspirated material is crucial to prove the monoclonality and the final diagnosis of a plasma cell neoplasm. DISCUSSION: Management of these situations include radiotherapy, chemotherapy, surgery or combined therapy. Novel medications including the immunomodulatory drugs or the proteasome inhibitors followed by consolidation with intensive chemotherapy and haematopoietic stem cell transplantation are nowadays used as upfront treatment in the cases associated to a plasma cell myeloma. CONCLUSION: Despite the rarity, plasma cell neoplasms should be considered in the differential diagnosis of obstructive jaundice and pancreatic neoplasms since they are potentially treatable situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioactive glasses, especially silica-based materials, are reported to pres- ent osteoconductive and osteoinductive properties, fundamental char- acteristics in bone regeneration [1,2]. Additionally, dexamethasone (Dex) is one of the bioactive agents able to induce the osteogenic differ- entiation of mesenchymal stem cells by increasing the alkaline phos- phatase activity, and the expression levels of Osteocalcin and Bone Sialoprotein [3]. Herein, we synthesised silica (SiO2) nanoparticles (that present inherent bioactivity and ability to act as a sustained drug delivery system), and coated their surface using poly-L-lysine (PLL) and hyaluronic acid (HA) using the layer-by-layer processing technique. Further on, we studied the influence of these new SiO2-polyelectrolyte coated nanoparticles as Dex sustained delivery systems. The SiO2 nanoparticles were loaded with Dex (SiO2-Dex) and coated with PLL and HA (SiO2-Dex-PLL-HA). Their Dex release profile was evaluated and a more sustained release was obtained with the SiO2-Dex-PLL-HA. All the particles were cultured with human bone marrow-derived mes- enchymal stem cells (hBMSCs) under osteogenic differentiation culture conditions. hBMSCs adhered, proliferated and differentiated towards the osteogenic lineage in the presence of SiO2 (DLS 174nm), SiO2-Dex (DLS 175nm) and SiO2-Dex-PLL-HA (DLS 679nm). The presence of these materials induced the overexpression of osteogenic transcripts, namely of Osteocalcin, Bone Sialoprotein and Runx2. Scanning Elec- tron Microscopy/Electron Dispersive Spectroscopy analysis demon- strated that hBMSCs synthesised calcium phosphates when cultured with SiO2-Dex and SiO2-Dex-PLL-HA nanoparticles. These results indi- cate the potential use of these SiO2-polyelectrolytes coated nanoparti- cles as dexamethasone delivery systems capable of promoting osteogenic differentiation of hBMSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range ( 0.5–4.7 lm), and mean distance between peaks (RSm) gradually varying from 214 lm to 33 lm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra 1.53 lm/RSm 79 lm in Dex-deprived OI medium, and Ra 0.93 lm/RSm 135 lm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Med. Fak., Diss., 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT : The epidermis, the outermost compartment of the skin, is a stratified and squamous epithelium that constantly self-renews. Keratinocytes, which represent the main epidermal population, are responsible for its cohesion and barrier function. Epidermal renewal necessitates a fine equilibrium between keratinocyte proliferation and differentiation. The keratinocyte stem cell, located in the basal cell layer, is responsible for epidermal homeostasis and regeneration during the wound healing process. The transcription factor p63 structurally belongs to the p53 superfamily. It is expressed in the basal and supra-basal cell layers of stratified epithelia and is thought to be important for the renewal or the differentiation of keratinocyte stem cells (Yang et al., 1999; Mills et al., 1999). In order to better understand its function, we established an in vitro model of p63 deficient human keratinocyte stem cells using a shp63 mediated RNA interference. Knockdown of endogenous p63 induces downregulation of cell-adhesion genes as previously described (Carroll et al., 2006). Interestingly, the replating of attached p63-knockdown keratinocytes on a feeder layer results in a loss of attachment and proliferation. They are no longer clonogenic. However, if the same population are replated in a fibrin matrix, extended fibrinolysis is reported, a common process in wound healing, suggesting that p63 regulates the fibrinolytic pathway. This result was confirmed by Q-PCR and shows that the urokinase pathway, which mediates fibrinolysis, is upregulated. Altogether, these findings suggest a mechanism in which the fine tuning of p63 expression promotes attachment or release of the keratinocyte stem cell from the basement membrane by inducing genes of adhesion and/or of fibrinolysis. This mechanism may be important for epidermal self-renewal, differentiation as well as wound healing. Its misregulation may be partly responsible for the p63 knockout phenotype. The downregulation of p63 also induces a decrease in LEKTI expression. LEKTI (lymphoepithelial Kazal-type serine protease inhibitor) is a serine protease inhibitor encoded by the Spink5 gene. It is expressed and secreted in the uppermost differentiated layers of stratified epithelia and plays a role in the desquamation process. When this gene is disrupted, humans develop the Netherton syndrome (Chavanas et al., 2000b). It is a dermatosis characterized by hair dysplasias, ichtyosiform erythroderma and impairment in epidermal barrier function promoting inflammation similarly as in psoriasis with inflammatory infiltrate in excess. TNFα (tumor necrosis factor alpha) and EDA1 (ectodysplasin A1) are two transmembraneprecursors that belong to the TNF superfamily, which is involved in immune and inflammation regulation (Smahi et al., 2002). We suggest that the secreted serine protease inhibitor LEKTI plays a role in the regulation of TNFα and EDA1 precursor cleavage and absence of LEKTI induces excess of inflammation. To investigate this hypothesis, we induced downregulation of Spink5 expression in rat keratinocyte stem cells by using a shSpink5 mediated RNA interference approach. Interestingly, expression of TNFα and EDA1 is modified after knockdown of Spink5 by Q-PCR. Moreover, downregulation of Spink5 induces loss of cohesiveness between keratinocytes and colonies adopt a scattered phenotype. Altogether, these preliminary data suggest that downregulation of LEKTI may play a role in the inflammatory response in Netherton syndrome patients, by regulating TNFα expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Natural Killer (NK) cells are thought to protect from residual leukemic cells in patients receiving stem cell transplantation. However, multiple retrospective analyses of patient data have yielded conflicting conclusions regarding a putative role of NK cells and the essential NK cell recognition events mediating a protective effect against leukemia. Further, a NK cell mediated protective effect against primary leukemia in vivo has not been shown directly.Methodology/Principal Findings: Here we addressed whether NK cells have the potential to control chronic myeloid leukemia (CML) arising based on the transplantation of BCR-ABL1 oncogene expressing primary bone marrow precursor cells into lethally irradiated recipient mice. These analyses identified missing-self recognition as the only NK cell-mediated recognition strategy, which is able to significantly protect from the development of CML disease in vivo.Conclusion: Our data provide a proof of principle that NK cells can control primary leukemic cells in vivo. Since the presence of NK cells reduced the abundance of leukemia propagating cancer stem cells, the data raise the possibility that NK cell recognition has the potential to cure CML, which may be difficult using small molecule BCR-ABL1 inhibitors. Finally, our findings validate approaches to treat leukemia using antibody-based blockade of self-specific inhibitory MHC class I receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of the polycomb group protein enhancer of zeste homologue 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair, and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here, we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep), or its specific downregulation by short hairpin RNA (shRNA), strongly impairs GBM cancer stem cell (CSC) self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM CSCs, we found the expression of c-myc, recently reported to be essential for GBM CSCs, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated downregulation of EZH2 in combination with chromatin immunoprecipitation experiments revealed that c-myc is a direct target of EZH2 in GBM CSCs. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM CSC maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.