983 resultados para mechanical methods
Resumo:
Sixty samples of tissue fragments with lesions suggestive of tuberculosis from bovine abattoirs, kept in saturated solution of sodium borate, were subjected to four treatments: 4% NaOH (Petroff Method), 12 % H2SO4 and 1.5% HPC (1-Hexadecylpyridinium Chloride) decontamination, and physiological saline solution (control). The HPC method showed the lowest contamination rate (3%) when compared to control (88%, p<0.001), NaOH (33%, p<0.001) and H2SO4 (21.7%, p<0.002). Regarding the isolation success, the HPC method was better (40%) than the control (3%, p<0.001), NaOH (13%, p=0.001) and H2SO4 (1.7%, p<0.001) methods. These results indicate that HPC is an alternative to the Petroff method.
Resumo:
O objetivo do presente estudo foi avaliar a prevalência de ingestão inadequada de nutrientes em um grupo de adolescentes de São Bernardo do Campo-SP. Dados de consumo de energia e nutrientes foram obtidos por meio de recordatórios de 24 horas aplicados em 89 adolescentes. A prevalência de inadequação foi calculada utilizando o método EAR como ponto de corte, após ajuste pela variabilidade intrapessoal, utilizando o procedimento desenvolvido pela Iowa State University. As Referências de Ingestão Dietética (IDR) foram os valores de referência para ingestão. Para os nutrientes que não possuem EAR estabelecida, a distribuição do consumo foi comparada com a AI. As maiores prevalências de inadequação em ambos sexos foram observadas para o magnésio (99,3 por cento para o sexo masculino e 81,8 por cento para o feminino), zinco (44,0 por cento para o sexo masculino e 23,5 por cento para o feminino), vitamina C (57,2 por cento para o sexo masculino e 59,9 por cento para o feminino) e folato (34,8 por cento para o sexo feminino). A proporção de indivíduos com ingestão superior à AI foi insignificante (menor que 2,0 por cento) em ambos os sexos
Resumo:
Expanded products have been developed by extrusion of non-conventional highly nutritious raw materials such as amaranth and chickpea blended with bovine lung. As sensory acceptance of these snacks is restricted, this study aimed at improving their texture, through the addition of monosodium glutamate (MSG) and disodium inosinate (IMP) flavor enhancers to the feeding material, or to the flavor added after the extrusion. Sensory and mechanical analyses showed that both enhancers affected texture, assessed by sensory and instrumental methods. Addition of IMP together with MSG to the chickpea-based snacks presented the best results. This beneficial effect was not observed in the amaranth-based snack, suggesting that IMP and MSG can favorably impact texture of extruded products depending on the amount and type of protein present
Resumo:
OBJECTIVE: To assess the perspectives of couples who requested vasectomy in a public health service on the use of male participation contraceptive methods available in Brazil: male condoms, natural family planning/calendar, coitus interruptus and vasectomy. METHODS: A qualitative study with semi-structured interviews was held with 20 couples who had requested vasectomy at the Human Reproduction Unit of the Universidade Estadual de Campinas, Brazil. Data analysis was carried out through thematic content analysis. FINDINGS: The couples did not, in general, know any effective contraceptive options for use by men and/or participating in their use, except for vasectomy. The few methods with male participation that they knew of were perceived to interfere in spontaneity and in pleasure of intercourse. Men accepted that condom use in extra-conjugal relations offered them protection from sexually transmitted diseases; that their wives might also participate in extra-marital relationships was not considered. DISCUSSION: The few contraceptive options with male participation lead to difficulty in sharing responsibilities between men and women. On the basis of perceived gender roles, women took the responsibility for contraception until the moment when the situation became untenable, and they faced the unavoidable necessity of sterilization. CONCLUSIONS: Specific actions are necessary for men to achieve integral participation in relation to reproductive sexual health. These include education and discussions on gender roles, leading to greater awareness in men of the realities of sexual and reproductive health
Resumo:
Background: A cross-cultural, randomized study was proposed to observe the effects of a school-based intervention designed to promote physical activity and healthy eating among high school students in 2 cities from different regions in Brazil: Recife and Florianopolis. The objective of this article is to describe the methodology and subjects enrolled in the project. Methods: Ten schools from each region were matched and randomized into intervention and control conditions. A questionnaire and anthropometry were used to collect data in the first and last month of the 2006 school year. The sample (n = 2155 at baseline; 55.7% females; 49.1% in the experimental group) included students 15 to 24 years, attending nighttime classes. The intervention focused on simple environmental/organizational changes, diet and physical activity education, and personnel training. Results: The central aspects of the intervention have been implemented in all 10 intervention schools. Problems during the intervention included teachers' strikes in both sites and lack of involvement of the canteen owners in schools. Conclusions: The Saude no Boa study provides evidence that public high schools in Brazil represent an important environment for health promotion. Its design and simple measurements increase the chances of it being sustained and disseminated to similar schools in Brazil.
Resumo:
The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.
Resumo:
Carrying out information about the microstructure and stress behaviour of ferromagnetic steels, magnetic Barkhausen noise (MBN) has been used as a basis for effective non-destructive testing methods, opening new areas in industrial applications. One of the factors that determines the quality and reliability of the MBN analysis is the way information is extracted from the signal. Commonly, simple scalar parameters are used to characterize the information content, such as amplitude maxima and signal root mean square. This paper presents a new approach based on the time-frequency analysis. The experimental test case relates the use of MBN signals to characterize hardness gradients in a AISI4140 steel. To that purpose different time-frequency (TFR) and time-scale (TSR) representations such as the spectrogram, the Wigner-Ville distribution, the Capongram, the ARgram obtained from an AutoRegressive model, the scalogram, and the Mellingram obtained from a Mellin transform are assessed. It is shown that, due to nonstationary characteristics of the MBN, TFRs can provide a rich and new panorama of these signals. Extraction techniques of some time-frequency parameters are used to allow a diagnostic process. Comparison with results obtained by the classical method highlights the improvement on the diagnosis provided by the method proposed.
Resumo:
In this work, the effects of indenter tip roundness oil the load-depth indentation curves were analyzed using finite element modeling. The tip roundness level was Studied based on the ratio between tip radius and maximum penetration depth (R/h(max)), which varied from 0.02 to 1. The proportional Curvature constant (C), the exponent of depth during loading (alpha), the initial unloading slope (S), the correction factor (beta), the level of piling-up or sinking-in (h(c)/h(max)), and the ratio h(max)/h(f) are shown to be strongly influenced by the ratio R/h(max). The hardness (H) was found to be independent of R/h(max) in the range studied. The Oliver and Pharr method was successful in following the variation of h(c)/h(max) with the ratio R/h(max) through the variation of S with the ratio R/h(max). However, this work confirmed the differences between the hardness values calculated using the Oliver-Pharr method and those obtained directly from finite element calculations; differences which derive from the error in area calculation that Occurs when given combinations of indented material properties are present. The ratio of plastic work to total work (W(p)/W(t)) was found to be independent of the ratio R/h(max), which demonstrates that the methods for the Calculation of mechanical properties based on the *indentation energy are potentially not Susceptible to errors caused by tip roundness.
Resumo:
Currently, the acoustic and nanoindentation techniques are two of the most used techniques for material elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nanoindentation technique are also reviewed. An experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nanoindentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained.
Resumo:
Background: High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons). This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random) applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability. Methods: Subjects (n = 6) were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses) and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise) applied to the triceps surae muscle group. In an additional investigation, M(max) and F-waves were elicited at different times before or after the vibratory stimulation. Results: The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves. Conclusions: These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC) due to the spinal recruitment of motoneurons. The association of vibration and electrical stimulation could be beneficial for many therapeutic interventions and vibration-based exercise programs. The command for the vibration-induced extra torques presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms.
Resumo:
This work uses crystal plasticity finite element simulations to elucidate the role of elastoplastic anisotropy in instrumented indentation P-h(s) curve measurements in face-centered Cubic (fcc) crystals. It is shown that although the experimental fluctuations in the loading stage of the P-h(s) curves can be attributed to anisotropy, the variability in the unloading stage of the experiments Is much greater than that resulting from anisotropy alone. Moreover, it is found that the conventional procedure used to evaluate the contact variables ruling the unloading P-h(s) curve introduces all uncertainty that approximates to the more fundamental influence of anisotropy. In view of these results, a robust procedure is proposed that uses contact area measurements in addition to the P-h(s) curves to extract homogenized J(2)-Plasticity-equivalent mechanical properties from single crystals.
Resumo:
Medium density fiberboard (MDF) is an engineered wood product formed by breaking down selected lignin-cellulosic material residuals into fibers, combining it with wax and a resin binder, and then forming panels by applying high temperature and pressure. Because the raw material in the industrial process is ever-changing, the panel industry requires methods for monitoring the composition of their products. The aim of this study was to estimate the ratio of sugarcane (SC) bagasse to Eucalyptus wood in MDF panels using near infrared (NIR) spectroscopy. Principal component analysis (PCA) and partial least square (PLS) regressions were performed. MDF panels having different bagasse contents were easily distinguished from each other by the PCA of their NIR spectra with clearly different patterns of response. The PLS-R models for SC content of these MDF samples presented a strong coefficient of determination (0.96) between the NIR-predicted and Lab-determined values and a low standard error of prediction (similar to 1.5%) in the cross-validations. A key role of resins (adhesives), cellulose, and lignin for such PLS-R calibrations was shown. PLS-DA model correctly classified ninety-four percent of MDF samples by cross-validations and ninety-eight percent of the panels by independent test set. These NIR-based models can be useful to quickly estimate sugarcane bagasse vs. Eucalyptus wood content ratio in unknown MDF samples and to verify the quality of these engineered wood products in an online process.
Resumo:
The health-relevant functionality of 10 thermally processed Peruvian Andean grains (five cereals, three pseudocereals, and two legumes) was evaluated for potential type 2 diabetes-relevant antihyperglycemia and antihypertension activity using in vitro enzyme assays. Inhibition of enzymes relevant for managing early stages of type 2 diabetes such as hyperglycemia-relevant alpha-glucosidase and alpha-amylase and hypertension-relevant angiotensin I-converting enzyme (ACE) were assayed along with the total phenolic content, phenolic profiles, and antioxidant activity based on the 1,1-diphenyl-2-picrylhydrazyl radical assay. Purple corn (Zea mays L.) (cereal) exhibited high free radical scavenging-linked antioxidant activity (77%) and had the highest total phenolic content (8 +/- 1 mg of gallic acid equivalents/g of sample weight) and alpha-glucosidase inhibitory activity (51% at 5 mg of sample weight). The major phenolic compound in this cereal was protocatechuic acid (287 +/- 15 mu g/g of sample weight). Pseudocereals such as Quinoa (Chenopodium quinoa Willd) and Kaniwa (Chenopodium pallidicaule Aellen) were rich in quercetin derivatives (1,131 +/- 56 and 943 +/- 35 mu g [expressed as quercetin aglycone]/g of sample weight, respectively) and had the highest antioxidant activity (86% and 75%, respectively). Andean legumes (Lupinus mutabilis cultivars SLP-1 and H-6) inhibited significantly the hypertension-relevant ACE (52% at 5 mg of sample weight). No alpha-amylase inhibitory activity was found in any of the evaluated Andean grains. This in vitro study indicates the potential of combination of Andean whole grain cereals, pseudocereals, and legumes to develop effective dietary strategies for managing type 2 diabetes and associated hypertension and provides the rationale for animal and clinical studies.
Resumo:
Objective: To evaluate the effects of local administration of epidermal growth factor (EGF) located within liposomes on recruitment of osteoclasts during mechanical force in rats. Materials and Methods: An orthodontic elastic band was inserted between the left upper first and second molars, to move mesially the first molar. Rats were randomly divided into 4 groups (n = 8): EGF (2 ng/mu L) located within liposomes (group 1), liposomes only (group 2), soluble EGF (2 ng/mu L; group 3), or vehicle alone (group 4). The solutions were injected into the region of the root furcation of the left first molar after elastic band insertion. Tooth movement was measured using a plaster model of the maxilla, and the number of osteoclasts recruited at the pressure side of the first molar was histologically evaluated. Results: Intergroup analysis showed that there was no significant difference between group 2 and group 4 (P >.05) and between group 1 and group 3 (P >.05). However, group 1 and group 3 exhibited greater differences in tooth movement than group 2 and group 4 (P <.05). On the other hand, group 1 showed greater tooth movement than groups 2 and 4 with statistical significance (P <.01). The increase in the number of osteoclasts in group 1 was significantly higher than in the other groups (P <.05). Conclusion: Exogenous EGF-liposome administration has an additive effect when compared with soluble EGF on the rate of osteoclast recruitment, producing faster bone resorption and tooth movement.
Resumo:
Various methods are currently used in order to predict shallow landslides within the catchment scale. Among them, physically based models present advantages associated with the physical description of processes by means of mathematical equations. The main objective of this research is the prediction of shallow landslides using TRIGRS model, in a pilot catchment located at Serra do Mar mountain range, Sao Paulo State, southeastern Brazil. Susceptibility scenarios have been simulated taking into account different mechanical and hydrological values. These scenarios were analysed based on a landslide scars map from the January 1985 event, upon which two indexes were applied: Scars Concentration (SC - ratio between the number of cells with scars, in each class, and the total number of cells with scars within the catchment) and Landslide Potential (LP - ratio between the number of cells with scars, in each class, and the total number of cells in that same class). The results showed a significant agreement between the simulated scenarios and the scar's map. In unstable areas (SF <= 1), the SC values exceeded 50% in all scenarios. Based on the results, the use of this model should be considered an important tool for shallow landslide prediction, especially in areas where mechanical and hydrological properties of the materials are not well known.