945 resultados para mean field independent component analysis
Resumo:
Medium density fiberboard (MDF) is an engineered wood product formed by breaking down selected lignin-cellulosic material residuals into fibers, combining it with wax and a resin binder, and then forming panels by applying high temperature and pressure. Because the raw material in the industrial process is ever-changing, the panel industry requires methods for monitoring the composition of their products. The aim of this study was to estimate the ratio of sugarcane (SC) bagasse to Eucalyptus wood in MDF panels using near infrared (NIR) spectroscopy. Principal component analysis (PCA) and partial least square (PLS) regressions were performed. MDF panels having different bagasse contents were easily distinguished from each other by the PCA of their NIR spectra with clearly different patterns of response. The PLS-R models for SC content of these MDF samples presented a strong coefficient of determination (0.96) between the NIR-predicted and Lab-determined values and a low standard error of prediction (similar to 1.5%) in the cross-validations. A key role of resins (adhesives), cellulose, and lignin for such PLS-R calibrations was shown. PLS-DA model correctly classified ninety-four percent of MDF samples by cross-validations and ninety-eight percent of the panels by independent test set. These NIR-based models can be useful to quickly estimate sugarcane bagasse vs. Eucalyptus wood content ratio in unknown MDF samples and to verify the quality of these engineered wood products in an online process.
Resumo:
Natural products have widespread biological activities, including inhibition of mitochondrial enzyme systems. Some of these activities, for example cytotoxicity, may be the result of alteration of cellular bioenergetics. Based on previous computer-aided drug design (CADD) studies and considering reported data on structure-activity relationships (SAR), an assumption regarding the mechanism of action of natural products against parasitic infections involves the NADH-oxidase inhibition. In this study, chemometric tools, such as: Principal Component Analysis (PCA), Consensus PCA (CPCA), and partial least squares regression (PLS), were applied to a set of forty natural compounds, acting as NADH-oxidase inhibitors. The calculations were performed using the VolSurf+ program. The formalisms employed generated good exploratory and predictive results. The independent variables or descriptors having a hydrophobic profile were strongly correlated to the biological data.
Resumo:
Context. The turbulent pumping effect corresponds to the transport of magnetic flux due to the presence of density and turbulence gradients in convectively unstable layers. In the induction equation it appears as an advective term and for this reason it is expected to be important in the solar and stellar dynamo processes. Aims. We explore the effects of turbulent pumping in a flux-dominated Babcock-Leighton solar dynamo model with a solar-like rotation law. Methods. As a first step, only vertical pumping has been considered through the inclusion of a radial diamagnetic term in the induction equation. In the second step, a latitudinal pumping term was included and then, a near-surface shear was included. Results. The results reveal the importance of the pumping mechanism in solving current limitations in mean field dynamo modeling, such as the storage of the magnetic flux and the latitudinal distribution of the sunspots. If a meridional flow is assumed to be present only in the upper part of the convective zone, it is the full turbulent pumping that regulates both the period of the solar cycle and the latitudinal distribution of the sunspot activity. In models that consider shear near the surface, a second shell of toroidal field is generated above r = 0.95 R(circle dot) at all latitudes. If the full pumping is also included, the polar toroidal fields are efficiently advected inwards, and the toroidal magnetic activity survives only at the observed latitudes near the equator. With regard to the parity of the magnetic field, only models that combine turbulent pumping with near-surface shear always converge to the dipolar parity. Conclusions. This result suggests that, under the Babcock-Leighton approach, the equartorward motion of the observed magnetic activity is governed by the latitudinal pumping of the toroidal magnetic field rather than by a large scale coherent meridional flow. Our results support the idea that the parity problem is related to the quadrupolar imprint of the meridional flow on the poloidal component of the magnetic field and the turbulent pumping positively contributes to wash out this imprint.
Resumo:
We investigate the phase diagram of a discrete version of the Maier-Saupe model with the inclusion of additional degrees of freedom to mimic a distribution of rodlike and disklike molecules. Solutions of this problem on a Bethe lattice come from the analysis of the fixed points of a set of nonlinear recursion relations. Besides the fixed points associated with isotropic and uniaxial nematic structures, there is also a fixed point associated with a biaxial nematic structure. Due to the existence of large overlaps of the stability regions, we resorted to a scheme to calculate the free energy of these structures deep in the interior of a large Cayley tree. Both thermodynamic and dynamic-stability analyses rule out the presence of a biaxial phase, in qualitative agreement with previous mean-field results.
Resumo:
In the last decade the Sznajd model has been successfully employed in modeling some properties and scale features of both proportional and majority elections. We propose a version of the Sznajd model with a generalized bounded confidence rule-a rule that limits the convincing capability of agents and that is essential to allow coexistence of opinions in the stationary state. With an appropriate choice of parameters it can be reduced to previous models. We solved this model both in a mean-field approach (for an arbitrary number of opinions) and numerically in a Barabaacutesi-Albert network (for three and four opinions), studying the transient and the possible stationary states. We built the phase portrait for the special cases of three and four opinions, defining the attractors and their basins of attraction. Through this analysis, we were able to understand and explain discrepancies between mean-field and simulation results obtained in previous works for the usual Sznajd model with bounded confidence and three opinions. Both the dynamical system approach and our generalized bounded confidence rule are quite general and we think it can be useful to the understanding of other similar models.
Resumo:
The existence of juxtaposed regions of distinct cultures in spite of the fact that people's beliefs have a tendency to become more similar to each other's as the individuals interact repeatedly is a puzzling phenomenon in the social sciences. Here we study an extreme version of the frequency-dependent bias model of social influence in which an individual adopts the opinion shared by the majority of the members of its extended neighborhood, which includes the individual itself. This is a variant of the majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors' opinions. We assume that the individuals are fixed in the sites of a square lattice of linear size L and that they interact with their nearest neighbors only. Within a mean-field framework, we derive the equations of motion for the density of individuals adopting a particular opinion in the single-site and pair approximations. Although the single-site approximation predicts a single opinion domain that takes over the entire lattice, the pair approximation yields a qualitatively correct picture with the coexistence of different opinion domains and a strong dependence on the initial conditions. Extensive Monte Carlo simulations indicate the existence of a rich distribution of opinion domains or clusters, the number of which grows with L(2) whereas the size of the largest cluster grows with ln L(2). The analysis of the sizes of the opinion domains shows that they obey a power-law distribution for not too large sizes but that they are exponentially distributed in the limit of very large clusters. In addition, similarly to other well-known social influence model-Axelrod's model-we found that these opinion domains are unstable to the effect of a thermal-like noise.
Resumo:
The rhizosphere is a niche exploited by a wide variety of bacteria. The expression of heterologous genes by plants might become a factor affecting the structure of bacterial communities in the rhizosphere. In a greenhouse experiment, the bacterial community associated to transgenic eucalyptus, carrying the Lhcb1-2 genes from pea (responsible for a higher photosynthetic capacity), was evaluated. The culturable bacterial community associated to transgenic and wild type plants were not different in density, and the Amplified Ribosomal DNA Restriction Analysis (ARDRA) typing of 124 strains revealed dominant ribotypes representing the bacterial orders Burkholderiales, Rhizobiales, and Actinomycetales, the families Xanthomonadaceae, and Bacillaceae, and the genus Mycobacterium. Principal Component Analysis based on the fingerprints obtained by culture-independent Denaturing Gradient Gel Electrophoresis analysis revealed that Alphaproteobacteria, Betaproteobacteria and Actinobacteria communities responded differently to plant genotypes. Similar effects for the cultivation of transgenic eucalyptus to those observed when two genotype-distinct wild type plants are compared.
Resumo:
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers including cutaneous melanoma, in which its levels of expression are associated with a poor prognosis and depth of invasion. Recently, we have demonstrated the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Herein we compare, via electrospray ionization mass spectrometry (ESI-MS), free fatty acids (FFA) composition of mitochondria isolated from control (EtOH-treated cells) and Orlistat-treated B16-F10 mouse melanoma cells. Principal component analysis (PCA) was applied to the ESI-MS data and found to separate the two groups of samples. Mitochondria from control cells showed predominance of six ions, that is, those of m/z 157 (Pelargonic, 9:0), 255 (Palmitic, 16:0), 281 (Oleic, 18:1), 311 (Arachidic, 20:0), 327 (Docosahexaenoic, 22:6) and 339 (Behenic, 22:0). In contrast, FASN inhibition with Orlistat changes significantly mitochondrial FFA composition by reducing synthesis of palmitic acid, and its elongation and unsaturation products, such as arachidic and behenic acids, and oleic acid, respectively. ESI-MS of mitochondria isolated from Orlistat-treated cells presented therefore three major ions of m/z 157 (Pelargonic, 9:0), 193 (unknown) and 199 (Lauric, 12:0). These findings demonstrate therefore that FASN inhibition by Orlistat induces significant changes in the FFA composition of mitochondria. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The supervised pattern recognition methods K-Nearest Neighbors (KNN), stepwise discriminant analysis (SDA), and soft independent modelling of class analogy (SIMCA) were employed in this work with the aim to investigate the relationship between the molecular structure of 27 cannabinoid compounds and their analgesic activity. Previous analyses using two unsupervised pattern recognition methods (PCA-principal component analysis and HCA-hierarchical cluster analysis) were performed and five descriptors were selected as the most relevants for the analgesic activity of the compounds studied: R (3) (charge density on substituent at position C(3)), Q (1) (charge on atom C(1)), A (surface area), log P (logarithm of the partition coefficient) and MR (molecular refractivity). The supervised pattern recognition methods (SDA, KNN, and SIMCA) were employed in order to construct a reliable model that can be able to predict the analgesic activity of new cannabinoid compounds and to validate our previous study. The results obtained using the SDA, KNN, and SIMCA methods agree perfectly with our previous model. Comparing the SDA, KNN, and SIMCA results with the PCA and HCA ones we could notice that all multivariate statistical methods classified the cannabinoid compounds studied in three groups exactly in the same way: active, moderately active, and inactive.
Resumo:
The simplest model of three coupled Bose-Einstein condensates is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean-field approximation. This semiclassical analysis, using system symmetries, shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points, and our analysis shows that the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, and undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays a dynamical transition. The quantum case has collapse and revival sequences superimposed on the semiclassical dynamics, reflecting the underlying discreteness of the spectrum. Nonzero circular current states are also demonstrated as one of the higher-dimensional effects displayed in this system.
Resumo:
The process of stimulated Raman adiabatic passage (STIRAP) provides a possible route for the generation of a coherent molecular Bose-Einstein condensate (BEC) from an atomic BEC. We analyze this process in a three-dimensional mean-field theory, including atom-atom interactions and nonresonant intermediate levels. We find that the process is feasible, but at larger Rabi frequencies than anticipated from a crude single-mode lossless analysis, due to two-photon dephasing caused by the atomic interactions. We then identify optimal strategies in STIRAP allowing one to maintain high conversion efficiencies with smaller Rabi frequencies and under experimentally less demanding conditions.
Resumo:
In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.
Resumo:
This work concerns the influence of industrialized agriculture in the tropics on precipitation chemistry. A total of 264 rain events were sampled using a wet-only collector in central Sao Paulo State, Brazil, between January 2003 and July 2007. Electroneutrality balance calculations (considering H(+), K(+), Na(+), NH(4)(+), Ca(2)(+), Mg(2)(+), Cl(-), NO(3)(-), SO(4)(2-), F(-), PO(4)(3-), H(3)CCOO(-), HCOO(-), C(2)O(4)(2-) and HCO(3)(-)) showed that there was an excess of cations (similar to 15%), which was attributed to the presence of unmeasured organic anion species originating from biomass burning and biogenic emissions. On average, the three ions NH(4)(+), NO(3)(-) and H(+) were responsible for >55% of the total ion concentrations in the rainwater samples. Concentrations (except of H(+)) were significantly higher (t-test; P = 0.05), by between two to six-fold depending on species, during the winter sugar cane harvest period, due to the practice of pre-harvest burning of the crop. Principal component analysis showed that three components could explain 88% of the variance for measurements made throughout the year: PC1 (52%, biomass burning and soil dust resuspension); PC2 (26%, secondary aerosols); PC3 (10%, road transport emissions). Differences between harvest and non-harvest periods appeared to be mainly due to an increased relative importance of road transport/industrial emissions during the summer (non-harvest) period. The volume-weighted mean (VWM) concentrations of ammonium (23.4 mu mol L(-1)) and nitrate (17.5 mu mol L(-1)) in rainwater samples collected during the harvest period were similar to those found in rainwater from Sao Paulo city, which emphasizes the importance of including rural agro-industrial emissions in regional-scale atmospheric chemistry and transport models. Since there was evidence of a biomass burning source throughout the year, it appears that rainwater composition will continue to be affected by vegetation fires, even after sugar cane burning is phased out as envisaged by recent Sao Paulo State legislation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative intersite hopping amplitudes (t < 0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t > 0 a large enhancement of the effective mass, itinerant ferromagnetism, and a metallic phase with a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. The different behavior encountered is a consequence of the larger noninteracting density of states (DOS) at the Fermi level for t > 0 than for t < 0, which effectively enhances the mass and the scattering amplitude of the quasiparticles. The shape of the DOS is crucial for the occurrence of ferromagnetism as for t > 0 the energy cost of polarizing the system is much smaller than for t < 0. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e., ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. The transport and magnetic properties measured in NaxCoO2 are consistent with DMFT predictions of a metal close to the Mott insulator and we discuss the role of Na ordering in driving the system towards the Mott transition. We propose that the Curie-Weiss metal phase observed in NaxCoO2 is a consequence of the crossover from a bad metal with incoherent quasiparticles at temperatures T > T-* and Fermi liquid behavior with enhanced parameters below T-*, where T-* is a low energy coherence scale induced by strong local Coulomb electron correlations. Our analysis also shows that the one band Hubbard model on a triangular lattice is not enough to describe the unusual properties of NaxCoO2 and is used to identify the simplest relevant model that captures the essential physics in NaxCoO2. We propose a model which allows for the Na ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.
Resumo:
The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.