959 resultados para matrix metalloproteinase-1
Resumo:
Objective: The purpose of this study was to analyze the influence of two different irradiation times with 85mW/cm(2) 830nm laser on the behavior of mouse odontoblast-like cells. Background data: The use of low-level laser therapy (LLLT) to stimulate pulp tissue is a reality, but few reports relate odontoblastic responses to irradiation in in vitro models. Methods: Odontoblast-like cells (MDPC-23) were cultivated and divided into three groups: control/nonirradiated (group 1); or irradiated with 85mW/cm(2), 830nm laser for 10 sec (0.8 J/cm(2)) (group 2); or for 50 sec (4.2 J/cm(2)) (group 3) with a wavelength of 830 nm. After 3, 7, and 10 days, it was analyzed: growth curve and cell viability, total protein content, alkaline phosphatase (ALP) activity, calcified nodules detection and quantification, collagen immunolocalization, vascular endothelial growth factor (VEGF) expression, and real-time polymerase chain reaction (PCR) for DMP1 gene. Data were analyzed by Kruskall-Wallis test (alpha = 0.05). Results: Cell growth was smaller in group 2 (p < 0.01), whereas viability was similar in all groups and at all periods. Total protein content and ALP activity increased on the 10th day with 0.8 J/cm(2) (p < 0.01), as well as the detection and quantification of mineralization nodules (p < 0.05), collagen, and VEGF expression (p < 0.01). The expression of DMP1 increased in all groups (p < 0.05) compared with control at 3 days, except for 0.8 J/cm(2) at 3 days and control at 10 days. Conclusions: LLLT influenced the behavior of odontoblast-like cells; the shorter time/smallest energy density promoted the expression of odontoblastic phenotype in a more significant way.
Resumo:
Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 +/- 17.3 versus 209 +/- 10.9 mm Hg in hypertensive controls, p < 0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p < 0.05). Doxycycline also decreased hypertension-induced oxidative stress (p <= 0.05), higher MMP activity (p < 0.01) and improved NO levels in aortic endothelial cells (p < 0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The pathogenesis of focal segmental glomerulosclerosis (FSGS) appears to be associated with type-2 cytokines and podocyte dysfunction. In this study, we tested the hypothesis that immunization with the polysaccharide fraction of Propionibacterium acnes (PS), a pro-Th1 agonist, may subvert the type-2 profile and protect podocytes from adriamycin-induced glomerulosclerosis. Adriamycin injection resulted in albuminuria and increased serum creatinine in association with loss of glomerular podocin and podoplanin expression, which is consistent with podocyte dysfunction. Renal tissue analysis revealed the expression of transcripts for GATA3 and fibrogenic-related proteins, such as TGF-beta, tissue inhibitor of metalloproteinase-1 (TIMP-1) and metalloproteinase 9 (MMP9). In association with the expression of fibrogenic transcripts, we observed peri-glomerular expression of a-smooth muscle actin (alpha-SMA), indicating epithelial-to-mesenchymal transition, and increased expression of proliferating cell nuclear antigen (PCNA) in tubular cells, suggesting intense proliferative activity. Previous immunization with PS inhibited albuminuria and serum creatinine in association with the preservation of podocyte proteins and inhibition of fibrogenic transcripts and the expression of alpha-SMA and PCNA proteins. Tissue analysis also revealed that PS treatment induced expression of mRNA for GD3 synthase, which is a glycosiltransferase related to the synthesis of GD3, a ganglioside associated with podocyte physiology. In addition, PS treatment inhibited the influx of inflammatory CD8(pos) and CD11b(pos) cells to kidney tissue. Finally, PS treatment on day 4 post-ADM, a period when proteinuria was already established, was able to improve renal function. Thus, we demonstrate that the PS fraction of P. acnes can inhibit FSGS pathogenesis, suggesting that immunomodulation can represent an alternative approach for disease management. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
OBJECTIVE: Extracellular matrix homeostasis is strictly maintained by a coordinated balance between the expression of metalloproteinases (MMPs) and their regulators. The purpose of this study was to investigate whether MMP-2 and its specific regulators, TIMP-2, MT1-MMP and IL-8, are expressed in a reproducible, specific pattern and if the profiles are related to prognosis and clinical outcome of prostate cancer (PCa). MATERIALS AND METHODS: MMP-2, TIMP-2, MT1-MMP and IL-8 expression levels were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) in freshly frozen malignant and benign tissue specimens collected from 79 patients with clinically localized PCa who underwent radical prostatectomies. The control group consisted of 11 patients with benign prostate hyperplasia (BPH). The expression profile of the MMP-2 and its regulators were compared using Gleason scores, pathological stage, pre-operative PSA levels and the final outcome of the PCa. RESULTS: The analysis of 79 specimens of PCa revealed that MMP-2, TIMP-2, MT1-MMP and IL-8 were underexpressed at 60.0%, 72.2%, 62.0% and 65.8%, respectively, in malignant prostatic tissue in relation to BPH samples. Considering the prognostic parameters, we demonstrated that high Gleason score tumors (> 7) overexpressed MMP-2 (p = 0.048) and TIMP-2 (p = 0.021), compared to low Gleason score tumors (< 7). CONCLUSION: We have demonstrated that MMP-2 and its regulators are underexpressed in PCa. Alternatively, overexpression of MMP-2 and TIMP-2 was related to higher Gleason score tumors. We postulate that alterations in metalloproteinase expression may be important in the control of tissue homeostasis related to prostate carcinogenesis and tumor behavior.
Resumo:
Tumore haben die Fähigkeit ihr Mikromilieu zu modulieren, um so ihre Entwicklung und ihre Ausbreitung zu fördern oder sich vor Angriffen des Immunsystems zu schützen. Die Expression der Matrix Metalloproteinasen 7 (MMP-7) wurde in vielen verschiedenen Tumoren analysiert. Neben prometastatischen und wachstumsfördernden Funktionen wurden auch antiapoptotische Wirkungen von MMP-7 auf die Tumorzellen belegt (Strand et al., 2004). Doch noch sind nicht alle immunmodulatorischen Eigenschaften von MMP-7 aufgeklärt worden. Ziel der vorliegenden Arbeit war es, die immunologischen Konsequenzen einer MMP-7 Expression durch Tumorzellen zu untersuchen.rnIm Rahmen dieser Arbeit konnte gezeigt werden, dass MMP-7 über die Spaltung der Rezeptortyrosinkinase EphB2 die Aktinpolymerisation und dadurch auch die Endozytose in Zellen verändern kann. EphB2 wurde als Target einer MMP-7 vermittelten Spaltung identifiziert. Die Untersuchungen mit MMP-7 überexprimierenden Hek 293 EcR Zellen und MMP-7 behandelten DCs zeigten unter dem Einfluss von MMP-7 eine wesentlich geringere EphB2 Expression auf deren Zelloberflächen. Zudem konnte durch in vitro Spaltversuche und anschließende Sequenzierung die Schnittstelle der MMP-7 induzierten Spaltung von EphB2 bestimmt werden. Anschließende Analysen belegten, dass durch die MMP-7 vermittelte Spaltung von EphB2 die Aktivierung der kleinen GTPasen Rac1 und Cdc42 stark reduziert wurden. Die Funktion von Cdc42 und Rac1 während der Aktinpolymerisation, als auch innerhalb der EphB2- Signalkaskade wurde bereits beschrieben (Irie and Yamaguchi, 2002). In der vorliegenden Arbeit wurde gezeigt, dass MMP-7 die Aktinpolymerisation in Zellen reduzierte, was warscheinlich eine direkte Auswirkung der EphB2 Spaltung war. rnWeitere Versuche ließen einen Zusammenhang zwischen der reduzierten Aktinpolymerisation und der verminderten Endozytose in MMP-7 behandelten Zellen erkennen. Unter dem Einfluss von MMP-7 konnte sowohl in Hek 293 EcR MMP7 Zellen als auch in unreifen DCs eine Reduktion der endozytotischen Aktivität ermittelt werden.rnUntersuchungen mit humanen T-Zellen zeigten auch hier einen verminderten Nachweis von EphB2 auf den Zellen, wenn diese vorher mit MMP-7 inkubiert wurden. Zudem führte die Anwesenheit von MMP-7 in T-Zellen ebenfalls zu einer verminderten Aktinpolymerisation. Die mit der Aktinpolymerisation verbundene Restrukturierung des Zytoskeletts gilt als essentieller Prozess für die T-Zellaktivität (Tskvitaria-Fuller et al., 2003; Krummel et al., 2000). Anschließende Versuche konnte daher nicht nur eine Beeinträchtigung von MMP-7 auf die zytotoxische Aktivität von T-Zellen belegen, sondern deuteten auch auf eine verminderten Proliferation nach Antigenstimulation unter dem Einfluss von MMP-7 hin.rnDie Rolle von MMP-7 aber auch die von EphB2 in der Tumorimmunologie wurde bereits untersucht. So konnte eine induzierte Überexpression von EphB2 das Krebszellwachstum, die Adhäsion und die Migration inhibieren, während der Verlust der EphB2 Expression zu einer verstärkten Invasion und Metastisierung von Tumorzellen führte (Guo et al., 2006). Zudem konnte gezeigt werde, dass Tumorzellen die Funktion von DCs beeinflussen können. DCs aus tumortragenden Mäusen zeigten im Vergleich zu Kontrollzellen eine reduzierte Aktivierung von Cdc42 und Rac1 und zudem eine verminderte Endozytoseaktivität (Tourkova et al., 2007). Die in der vorliegenden Arbeit gezeigten MMP-7 bedingten Veränderungen der Aktinpolymerisation stellen womöglich eine Verbindung zwischen den genannten Untersuchungen her und offenbaren weitere immunologische Konsequenzen einer MMP-7 Expression im Tumor. rnrn
Resumo:
Mouse molars undergo distal movement, during which new bone is formed at the mesial side of the tooth root whereas the preexisting bone is resorbed at the distal side of the root. However, there is little detailed information available regarding which of the bones that surround the tooth root are involved in physiological tooth movement. In the present study, we therefore aimed to investigate the precise morphological differences of the alveolar bone between the bone formation side of the tooth root, using routine histological procedures including silver impregnation, as well as by immunohistochemical analysis of alkaline phosphatase and tartrate-resistant acid phosphatase activity, and immunohistochemical analysis of the expression of the osteocyte markers dentin matrix protein 1, sclerostin, and fibroblast growth factor 23. Histochemical analysis indicated that bone formation by osteoblasts and bone resorption by osteoclasts occurred at the bone formation side and the bone resorption side, respectively. Osteocyte marker immunoreactivity of osteocytes at the surface of the bone close to the periodontal ligament differed at the bone formation and bone resorption sides. We also showed different specific features of osteocytic lacunar canalicular systems at the bone formation and bone resorption sides by using silver staining. This study suggests that the alveolar bone is different in the osteocyte nature between the bone formation side and the bone resorption side due to physiological distal movement of the mouse molar.
Resumo:
Angiotensin II (Ang II), a key protein in the renin-angiotensin system, can induce cardiac hypertrophy through an intracrine system as well as affect gene transcription. The receptor to Ang II responsible for this effect, AT1, has been localized to the nucleus of cell types in addition to cardiomyocytes. In this study, we induced expression of Ang II in MC3T3 osteoblasts and K7M2 osteosarcomas and measured changes in protein expression of Annexin V and matrix metalloproteinase 2 (MMP2), proteins identified previously through mass spectrometry analysis as being regulated by Ang II. Annexin V is downregulated in both immortalized murine bone (MC3T3) cells and in cancerous immortalized murine (K7M2) cells induced to express Ang II. MC3T3 cells which express Ang II show a downregulation of MMP2 expression, but Ang II-expressing K7M2 cells show an upregulation of MMP2. The differential regulation of MMP2 between the cancerous cells and noncancerous cells implicates a role for Ang in in tumor metastasis, as MMP2 is a metastatic protein. Annexin V is used as a marker for apoptosis, but nothing is known of the function of the endogenous protein. That Annexin V is potentially regulated by Ang II provides more information with which to characterize the protein and could suggest a function for Annexin V as part of a signal transduction pathway inside of the cell.
Resumo:
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor, which also has neuroprotective activity. In view of these dual actions on vessels and neurons, we were interested whether VEGF promotes long distance axonal plasticity in the ischemic brain. Herein, we show that VEGF promotes neurological stroke recovery in mice when delivered in a delayed way starting 3 days after middle cerebral artery occlusion. Using anterograde tract-tracing experiments that we combined with histochemical and molecular biological studies, we demonstrate that although VEGF promoted angiogenesis predominantly in the ischemic hemisphere, pronounced axonal sprouting was induced by VEGF in the contralesional, but not the ipsilesional corticobulbar system. Corticobulbar plasticity was accompanied by the deactivation of the matrix metalloproteinase MMP9 in the lesioned hemisphere and the transient downregulation of the axonal growth inhibitors NG2 proteoglycan and brevican and the guidance molecules ephrin B1/2 in the contralesional hemisphere. The regulation of matrix proteinases, growth inhibitors, and guidance molecules offers insights how brain plasticity is controlled in the ischemic brain.
Resumo:
In spite of improved antimicrobial therapy, bacterial meningitis still results in brain damage leading to significant long-term neurological sequelae in a substantial number of survivors, as confirmed by several recent studies. Meningitis caused by Streptococcus pneumoniae is associated with a particularly severe outcome. Experimental studies over the past few years have increased our understanding of the molecular mechanisms underlying the events that ultimately lead to brain damage during meningitis. Necrotic damage to the cerebral cortex is at least partly mediated by ischemia and oxygen radicals and therefore offers a promising target for adjunctive therapeutic intervention. Neuronal apoptosis in the hippocampus may represent the major pathological process responsible for cognitive impairment and learning disabilities in survivors. However, the mechanisms involved in causing this damage remain largely unknown. Anti-inflammatory treatment with corticosteroids aggravates hippocampal damage, thus underlining the potential shortcomings of current adjuvant strategies. In contrast, the combined inhibition of matrix metalloproteinase and tumour necrosis factor-alpha converting enzyme protected both the cortex and hippocampus in experimental meningitis, and may represent a promising new approach to adjunctive therapy. It is the hope that a more refined molecular understanding of the pathogenesis of brain damage during bacterial meningitis will lead to new adjunctive therapies.
Resumo:
Multiplication of bacteria within the central nervous system compartment triggers a host response with an overshooting inflammatory reaction which leads to brain parenchyma damage. Some of the inflammatory and neurotoxic mediators involved in the processes leading to neuronal injury during bacterial meningitis have been identified in recent years. As a result, the therapeutic approach to the disease has widened from eradication of the bacterial pathogen with antibiotics to attenuation of the detrimental effects of host defences. Corticosteroids represent an example of the adjuvant therapeutic strategies aimed at downmodulating excessive inflammation in the infected central nervous system. Pathophysiological concepts derived from an experimental rat model of bacterial meningitis revealed possible therapeutic strategies for prevention of brain damage. The insights gained led to the evaluation of new therapeutic modalities such as anticytokine agents, matrix metalloproteinase inhibitors, antioxidants, and antagonists of endothelin and glutamate. Bacterial meningitis is still associated with persistent neurological sequelae in approximately one third of surviving patients. Future research in the model will evaluate whether the neuroprotective agents identified so far have the potential to attenuate learning disabilities as a long-term consequence of bacterial meningitis.
Resumo:
Epidermal growth factor (EGF) is excreted in a high concentration in human saliva and modulates the growth and differentiation of various cancer cells. To elucidate the molecular mechanisms by which EGF affects oral cancer growth and invasion, we analyzed the Matrigel invasion activity of the cultured oral cancer cell line. Cells grown under the influence of EGF were subjected to Matrigel invasion assays and cells grown in the absence of EGF were used as controls. Gelatin-zymography and Northern blot analyses quantified the invasiveness and tumorigenicity. Chloramphenicol acetyltransferase assay (CAT assay) determined the EGF stimulation of matrix metalloproteinase (MMP) expression. EGF increased the number of cells penetrating a Matrigel membrane. Gelatin-zymography and Northern blot analysis revealed that MMP9 and Ets1 expressions correlated with EGF but MMP2 was not changed. a transient transfection assay revealed that EGF increased the promoter activities of the MMP9 genes in HSC3 and SAS cells. These results suggest that EGF increases the invasion activity of oral cancer cells partly by increasing MMP9.
Resumo:
BACKGROUND: As only a minority of alcoholics develop cirrhosis, polymorphic genes, whose products are involved in fibrosis development were suggested to confer individual susceptibility. We tested whether a functional promoter polymorphism in the gene encoding matrix metalloproteinase-3 (MMP-3; 1171 5A/6A) was associated liver cirrhosis in alcoholics. METHODS: Independent cohorts from the UK and Germany were studied. (i) UK cohort: 320 alcoholic cirrhotics and 183 heavy drinkers without liver damage and (ii) German cohort: 149 alcoholic cirrhotics, 220 alcoholic cirrhotics who underwent liver transplantation and 151 alcoholics without liver disease. Patients were genotyped for MMP-3 variants by restriction fragment length polymorphism, single strand confirmation polymorphism, and direct sequencing. In addition, MMP-3 transcript levels were correlated with MMP-3 genotype in normal liver tissues. RESULTS: Matrix metalloproteinase-3 genotype and allele distribution in all 1023 alcoholic patients were in Hardy-Weinberg equilibrium. No significant differences in MMP-3 genotype and allele frequencies were observed either between alcoholics with or without cirrhosis. There were no differences in hepatic mRNA transcription levels according to MMP-3 genotype. CONCLUSIONS: Matrix metalloproteinase-3 1171 promoter polymorphism plays no role in the genetic predisposition for liver cirrhosis in alcoholics. Stringently designed candidate gene association studies are required to exclude chance observations.
Resumo:
The vitronectin receptor integrin alphavbeta3 promotes angiogenesis by mediating migration and proliferation of endothelial cells, but also drives fibrogenic activation of hepatic stellate cells (HSCs) in vitro. Expecting antifibrotic synergism, we studied the effect of alphavbeta3 inhibition in two in vivo models of liver fibrogenesis. Liver fibrosis was induced in rats by way of bile duct ligation (BDL) for 6 weeks or thioacetamide (TAA) injections for 12 weeks. A specific alphavbeta3 (alphavbeta5) inhibitor (Cilengitide) was given intraperitoneally twice daily at 15 mg/kg during BDL or after TAA administration. Liver collagen was determined as hydroxyproline, and gene expression was quantified by way of quantitative polymerase chain reaction. Liver angiogenesis, macrophage infiltration, and hypoxia were assessed by way of CD31, CD68 and hypoxia-inducible factor-1alpha immunostaining. Cilengitide decreased overall vessel formation. This was significant in portal areas of BDL and septal areas of TAA fibrotic rats and was associated with a significant increase of liver collagen by 31% (BDL) and 27% (TAA), and up-regulation of profibrogenic genes and matrix metalloproteinase-13. Treatment increased gamma glutamyl transpeptidase in both models, while other serum markers remained unchanged. alphavbeta3 inhibition resulted in mild liver hypoxia, as evidenced by up-regulation of hypoxia-inducible genes. Liver infiltration by macrophages/Kupffer cells was not affected, although increases in tumor necrosis factor alpha, interleukin-18, and cyclooxygenase-2 messenger RNA indicated modest macrophage activation. CONCLUSION: Specific inhibition of integrin alphavbeta3 (alphavbeta5) in vivo decreased angiogenesis but worsened biliary (BDL) and septal (TAA) fibrosis, despite its antifibrogenic effect on HSCs in vitro. Angiogenesis inhibitors should be used with caution in patients with hepatic fibrosis.
Resumo:
BACKGROUND/AIMS: Proliferative diabetic retinopathy is characterized by the formation of retinal neovascularization. Angiopoietin-2 (Ang-2) and matrix metalloproteinase (MMP) play a critical role in angiogenesis. However, the precise location and function of Ang-2 during formation of retinal neovascularizations driven by hypoxia in relation to MMP activity have not been elucidated. In this study, we investigated the response of Ang-2 heterozygous knockout retinas (Ang2(+/-) mouse) to hypoxia and its link to MMP activity in an oxygen-induced retinopathy (OIR) model. METHODS: Pre-retinal neovascularizations were quantitated in vertical sections. Intra-retinal angiogenesis was assessed by whole mount immunofluorescence staining of retinas. MMP activity was examined in retinal protein lysate and whole mount retinal in situ zymography. RESULTS: Ang2(+/-) retinas subjected to the OIR model showed 33% reduced neovascularization and 271% increased avascular zones at postnatal day 17. In the OIR model, Ang-2 was modestly expressed in pre-retinal neovascularizations and venules, but strongly in arterioles and capillary sprouts. MMPs were activated in close association to where Ang-2 is expressed. MMP activity was substantially decreased in Ang2(+/-) retinas. CONCLUSIONS: Our present data suggest the spatially concomitant expression of Ang2 and MMPs, and that Ang2 modulates hypoxia-induced neovascularization by regulating MMP activity.
Resumo:
Trophism as a "clonal dominance" support mechanism for tumor cells is an unexplored area of tumor progression. This report presents evidence that the human melanoma low-affinity neurotrophin receptor (p75) can signal independently of its high-affinity tyrosine kinase counterparts, the TRK family of kinases. Signaling may be accomplished by a p75-associated purine-analog-sensitive kinase and results in enhanced invasion into a reconstituted basement membrane with a corresponding stimulation of matrix metalloproteinase-2 expression. Additionally, a "stress culture" survival assay was developed to mimic the growth limiting conditions encountered by melanoma cells in a rapidly growing primary tumor or metastatic deposit prior to neoangiogenesis. Under these conditions, p75, promotes the survival of high p75 expressing brain-colonizing melanoma cells. Extensive 70W melanoma cell-cell contact, which downregulates p75, immediately precedes the induction of cell death associated with diminished production of two key cell survival factors, bcl-2 and the p85 subunit of phosphoinositol-3-kinase, and an elevation in apoptosis promoting intracellular reactive oxygen species (ROSs). Since one function of bcl-2 may be to control the generation of ROSs via the antioxidant pathway, these cells may receive a apoptosis-prompting "double hit". 70W melanoma cell death occurred by an apoptotic mechanism displaying classical morphological changes including plasma membrane blebbing, loss of microvilli and redistribution of ribosomes. 70W apoptosis could be pharmacologically triggered following anti-p75 monoclonal antibody-mediated clustering of p75 receptors. 70W cells fluorescently sorted for high-p75 expression (p75$\sp{\rm H}$ cells) exhibited an augmented survival potential and a predilection to sort with the S + G2/M growth phase, relative to their low p75 expressing, p75$\sp{\rm L}$ counterparts. Apoptosis is significantly delayed by p75$\sp{\rm H}$ cells, whereas p75$\sp{\rm L}$ cells are exquisitely prone to initiate apoptosis. Importantly, the p75$\sp{\rm L}$ cells that survive apoptosis, highly re-expressed p75 and were remarkably responsive to exogenous NGF.^ These are the first data to implicate p75-mediated neurotrophism as an invasion and survival support mechanism employed by brain-metastatic cells. In particular, these results may have implications in little understood phenomena of tumor progression, such as the emergence of "clonal dominance" and tumor dormancy. ^