981 resultados para mass measurement


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prompt and non-prompt production cross-sections for ψ(2S) mesons are measured using 2.1 fb−1 of pp collision data at a centre-of-mass energy of 7TeV recorded by the ATLAS experiment at the LHC. The measurement exploits the ψ(2S) → J/ψ (→μ+μ−)π+π− decay mode, and probes ψ(2S) mesons with transverse momenta in the range10 ≤ pT < 100 GeV and rapidity |y| < 2.0. The results are compared to other measurements of ψ(2S) production at the LHC and to various theoretical models for prompt and non-prompt quarkonium production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of differential production cross-sections of a Z boson in association with b-jets in pp collisions at √s = 7TeV are reported. The data analysed correspond to an integrated luminosity of 4.6 fb−1 recorded with the ATLAS detector at the Large Hadron Collider. Particle-level cross-sections are determined for events with a Z boson decaying into an electron or muon pair, and containing b-jets. For events with at least one b-jet, the cross-section is presented as a function of the Z boson transverse momentum and rapidity, together with the inclusive b-jet cross-section as a function of b-jet transverse momentum, rapidity and angular separations between the b-jet and the Z boson. For events with at least two b-jets, the cross-section is determined as a function of the invariant mass and angular separation of the two highest transverse momentum b-jets, and as a function of the Z boson transverse momentum and rapidity. Results are compared to leading-order and next-to-leading-order perturbative QCD calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to allhadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of s = 7 TeV and correspond to an integrated luminosity of 4.6 fb−1. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum pT > 320 GeV and pseudorapidity |η| < 1.9, is measured to be σ + = ± W Z 8.5 1.7 pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a measurement of the Z/ѵ* boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of √s = 7 TeV at the LHC. The measurement is performed in the Z/ѵ* → e+e− and Z/ѵ* → μ+μ− channels, using data corresponding to an integrated luminosity of 4.7 fb−1. Normalized differential cross sections as a function of the Z/ѵ* boson transverse momentum are measured for transverse momenta up to 800 GeV. The measurement is performed inclusively for Z/ѵ* rapidities up to 2.4, as well as in three rapidity bins. The channel results are combined, compared to perturbative and resummed QCD calculations and used to constrain the parton shower parameters of Monte Carlo generators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributions sensitive to the underlying event in QCD jet events have been measured with the ATLAS detector at the LHC, based on 37 pb−1 of proton–proton collision data collected at a centre-of-mass energy of 7 TeV. Chargedparticle mean pT and densities of all-particle ET and chargedparticle multiplicity and pT have been measured in regions azimuthally transverse to the hardest jet in each event. These are presented both as one-dimensional distributions and with their mean values as functions of the leading-jet transverse momentum from 20 to 800 GeV. The correlation of chargedparticle mean pT with charged-particle multiplicity is also studied, and the ET densities include the forward rapidity region; these features provide extra data constraints for Monte Carlo modelling of colour reconnection and beamremnant effects respectively. For the first time, underlying event observables have been computed separately for inclusive jet and exclusive dijet event selections, allowing more detailed study of the interplay of multiple partonic scattering and QCD radiation contributions to the underlying event. Comparisonsto the predictions of different Monte Carlo models show a need for further model tuning, but the standard approach is found to generally reproduce the features of the underlying event in both types of event selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A measurement of the parity-violating decay asymmetry parameter, αb , and the helicity amplitudes for the decay Λ 0 b →J/ψ(μ + μ − )Λ 0 (pπ − ) is reported. The analysis is based on 1400 Λ 0 b and Λ ¯ 0 b baryons selected in 4.6  fb −1 of proton–proton collision data with a center-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. By combining the Λ 0 b and Λ ¯ 0 b samples under the assumption of CP conservation, the value of α b is measured to be 0.30±0.16(stat)±0.06(syst) . This measurement provides a test of theoretical models based on perturbative QCD or heavy-quark effective theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of fiducial cross sections for the electroweak production of two jets in association with a Z-boson are presented. The measurements are performed using 20.3 fb−1 of proton-proton collision data collected at a centre-of-mass energy of p s = 8TeV by the ATLAS experiment at the Large Hadron Collider. The electroweak component is extracted by a fit to the dijet invariant mass distribution in a fiducial region chosen to enhance the electroweak contribution over the dominant background in which the jets are produced via the strong interaction. The electroweak cross sections measured in two fiducial regions are in good agreement with the Standard Model expectations and the background-only hypothesis is rejected with significance above the 5ơ level. The electroweak process includes the vector boson fusion production of a Z-boson and the data are used to place limits on anomalous triple gauge boson couplings. In addition, measurements of cross sections and differential distributions for inclusive Z-boson-plus-dijet production are performed in five fiducial regions, each with different sensitivity to the electroweak contribution. The results are corrected for detector effects and compared to predictions from the Sherpa and Powheg event generators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A measurement of the cross section for the production of isolated prompt photons in pp collisions at a center-of-mass energy s √ =7  TeV is presented. The results are based on an integrated luminosity of 4.6  fb −1 collected with the ATLAS detector at the LHC. The cross section is measured as a function of photon pseudorapidity η γ and transverse energy E γ T in the kinematic range 100≤E γ T <1000  GeV and in the regions |η γ |<1.37 and 1.52≤|η γ |<2.37 . The results are compared to leading-order parton-shower Monte Carlo models and next-to-leading-order perturbative QCD calculations. Next-to-leading-order perturbative QCD calculations agree well with the measured cross sections as a function of E γ T and η γ .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ 23 . Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10 20 protons on target, T2K has fit the energy-dependent ν μ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin 2 (θ 23 ) is 0.514 +0.055 −0.056 (0.511±0.055 ), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm 2 32 =(2.51±0.10)×10 −3   eV 2 /c 4 (inverted hierarchy: Δm 2 13 =(2.48±0.10)×10 −3   eV 2 /c 4 ). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158GeV/c (√s = 6.3, 7.7,8.8, 12.3 and 17.3GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN super proton synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERNSPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus–nucleus and proton–nucleus collisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70% of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20%in winter and 40%in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To analytically validate a gas concentration of chromatography-mass spectrometry (GC-MS) method for measurement of 6 amino acids in canine serum samples and to assess the stability of each amino acid after sample storage. SAMPLES Surplus serum from 80 canine samples submitted to the Gastrointestinal Laboratory at Texas A&M University and serum samples from 12 healthy dogs. PROCEDURES GC-MS was validated to determine precision, reproducibility, limit of detection, and percentage recovery of known added concentrations of 6 amino acids in surplus serum samples. Amino acid concentrations in serum samples from healthy dogs were measured before (baseline) and after storage in various conditions. RESULTS Intra- and interassay coefficients of variation (10 replicates involving 12 pooled serum samples) were 13.4% and 16.6% for glycine, 9.3% and 12.4% for glutamic acid, 5.1% and 6.3% for methionine, 14.0% and 15.1% for tryptophan, 6.2% and 11.0% for tyrosine, and 7.4% and 12.4% for lysine, respectively. Observed-to-expected concentration ratios in dilutional parallelism tests (6 replicates involving 6 pooled serum samples) were 79.5% to 111.5% for glycine, 80.9% to 123.0% for glutamic acid, 77.8% to 111.0% for methionine, 85.2% to 98.0% for tryptophan, 79.4% to 115.0% for tyrosine, and 79.4% to 110.0% for lysine. No amino acid concentration changed significantly from baseline after serum sample storage at -80°C for ≤ 7 days. CONCLUSIONS AND CLINICAL RELEVANCE GC-MS measurement of concentration of 6 amino acids in canine serum samples yielded precise, accurate, and reproducible results. Sample storage at -80°C for 1 week had no effect on GC-MS results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ab initio calculations of Afρ are presented using Mie scattering theory and a Direct Simulation Monte Carlo (DSMC) dust outflow model in support of the Rosetta mission and its target 67P/Churyumov-Gerasimenko (CG). These calculations are performed for particle sizes ranging from 0.010 μm to 1.0 cm. The present status of our knowledge of various differential particle size distributions is reviewed and a variety of particle size distributions is used to explore their effect on Afρ , and the dust mass production View the MathML sourcem˙. A new simple two parameter particle size distribution that curtails the effect of particles below 1 μm is developed. The contributions of all particle sizes are summed to get a resulting overall Afρ. The resultant Afρ could not easily be predicted a priori and turned out to be considerably more constraining regarding the mass loss rate than expected. It is found that a proper calculation of Afρ combined with a good Afρ measurement can constrain the dust/gas ratio in the coma of comets as well as other methods presently available. Phase curves of Afρ versus scattering angle are calculated and produce good agreement with observational data. The major conclusions of our calculations are: – The original definition of A in Afρ is problematical and Afρ should be: qsca(n,λ)×p(g)×f×ρqsca(n,λ)×p(g)×f×ρ. Nevertheless, we keep the present nomenclature of Afρ as a measured quantity for an ensemble of coma particles.– The ratio between Afρ and the dust mass loss rate View the MathML sourcem˙ is dominated by the particle size distribution. – For most particle size distributions presently in use, small particles in the range from 0.10 to 1.0 μm contribute a large fraction to Afρ. – Simplifying the calculation of Afρ by considering only large particles and approximating qsca does not represent a realistic model. Mie scattering theory or if necessary, more complex scattering calculations must be used. – For the commonly used particle size distribution, dn/da ∼ a−3.5 to a−4, there is a natural cut off in Afρ contribution for both small and large particles. – The scattering phase function must be taken into account for each particle size; otherwise the contribution of large particles can be over-estimated by a factor of 10. – Using an imaginary index of refraction of i = 0.10 does not produce sufficient backscattering to match observational data. – A mixture of dark particles with i ⩾ 0.10 and brighter silicate particles with i ⩽ 0.04 matches the observed phase curves quite well. – Using current observational constraints, we find the dust/gas mass-production ratio of CG at 1.3 AU is confined to a range of 0.03–0.5 with a reasonably likely value around 0.1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ECHo Collaboration (Electron Capture 163Ho aims to investigate the calorimetric spectrum following the electron capture decay of 163Ho to determine the mass of the electron neutrino. The size of the neutrino mass is reflected in the endpoint region of the spectrum, i.e., the last few eV below the transition energy. To check for systematic uncertainties, an independent determination of this transition energy, the Q-value, is mandatory. Using the TRIGA-TRAP setup, we demonstrate the feasibility of performing this measurement by Penning-trap mass spectrometry. With the currently available, purified 163Ho sample and an improved laser ablation mini-RFQ ion source, we were able to perform direct mass measurements of 163Ho and 163Dy with a sample size of less than 1017 atoms. The measurements were carried out by determining the ratio of the cyclotron frequencies of the two isotopes to those of carbon cluster ions using the time-of-flight ion cyclotron resonance method. The obtained mass excess values are ME(163Ho)= −66379.3(9) keV and ME(163Dy)= −66381.7(8) keV. In addition, the Q-value was measured for the first time by Penning-trap mass spectrometry to be Q = 2.5(7) keV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2:5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 μm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60–91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved longterm data sets.