911 resultados para managerial power approach.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Static analysis tools report software defects that may or may not be detected by other verification methods. Two challenges complicating the adoption of these tools are spurious false positive warnings and legitimate warnings that are not acted on. This paper reports automated support to help address these challenges using logistic regression models that predict the foregoing types of warnings from signals in the warnings and implicated code. Because examining many potential signaling factors in large software development settings can be expensive, we use a screening methodology to quickly discard factors with low predictive power and cost-effectively build predictive models. Our empirical evaluation indicates that these models can achieve high accuracy in predicting accurate and actionable static analysis warnings, and suggests that the models are competitive with alternative models built without screening.
Resumo:
We experimentally revisit a technique of low-cost multiparameter monitor for optical performance monitoring based on low frequency polarization modulation. A simplified calibration procedure, which significantly reduces the mathematical complexity and processing effort is proposed. Validation is achieved by carrying out relative optical power, wavelength, and differential group delay measurements. (C) 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:18201824, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26956
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Resumo:
This paper discusses the power allocation with fixed rate constraint problem in multi-carrier code division multiple access (MC-CDMA) networks, that has been solved through game theoretic perspective by the use of an iterative water-filling algorithm (IWFA). The problem is analyzed under various interference density configurations, and its reliability is studied in terms of solution existence and uniqueness. Moreover, numerical results reveal the approach shortcoming, thus a new method combining swarm intelligence and IWFA is proposed to make practicable the use of game theoretic approaches in realistic MC-CDMA systems scenarios. The contribution of this paper is twofold: (i) provide a complete analysis for the existence and uniqueness of the game solution, from simple to more realist and complex interference scenarios; (ii) propose a hybrid power allocation optimization method combining swarm intelligence, game theory and IWFA. To corroborate the effectiveness of the proposed method, an outage probability analysis in realistic interference scenarios, and a complexity comparison with the classical IWFA are presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work proposes a computational tool to assist power system engineers in the field tuning of power system stabilizers (PSSs) and Automatic Voltage Regulators (AVRs). The outcome of this tool is a range of gain values for theses controllers within which there is a theoretical guarantee of stability for the closed-loop system. This range is given as a set of limit values for the static gains of the controllers of interest, in such a way that the engineer responsible for the field tuning of PSSs and/or AVRs can be confident with respect to system stability when adjusting the corresponding static gains within this range. This feature of the proposed tool is highly desirable from a practical viewpoint, since the PSS and AVR commissioning stage always involve some readjustment of the controller gains to account for the differences between the nominal model and the actual behavior of the system. By capturing these differences as uncertainties in the model, this computational tool is able to guarantee stability for the whole uncertain model using an approach based on linear matrix inequalities. It is also important to remark that the tool proposed in this paper can also be applied to other types of parameters of either PSSs or Power Oscillation Dampers, as well as other types of controllers (such as speed governors, for example). To show its effectiveness, applications of the proposed tool to two benchmarks for small signal stability studies are presented at the end of this paper.
Resumo:
The behavior of composed Web services depends on the results of the invoked services; unexpected behavior of one of the invoked services can threat the correct execution of an entire composition. This paper proposes an event-based approach to black-box testing of Web service compositions based on event sequence graphs, which are extended by facilities to deal not only with service behavior under regular circumstances (i.e., where cooperating services are working as expected) but also with their behavior in undesirable situations (i.e., where cooperating services are not working as expected). Furthermore, the approach can be used independently of artifacts (e.g., Business Process Execution Language) or type of composition (orchestration/choreography). A large case study, based on a commercial Web application, demonstrates the feasibility of the approach and analyzes its characteristics. Test generation and execution are supported by dedicated tools. Especially, the use of an enterprise service bus for test execution is noteworthy and differs from other approaches. The results of the case study encourage to suggest that the new approach has the power to detect faults systematically, performing properly even with complex and large compositions. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
The research activity carried out during the PhD course in Electrical Engineering belongs to the branch of electric and electronic measurements. The main subject of the present thesis is a distributed measurement system to be installed in Medium Voltage power networks, as well as the method developed to analyze data acquired by the measurement system itself and to monitor power quality. In chapter 2 the increasing interest towards power quality in electrical systems is illustrated, by reporting the international research activity inherent to the problem and the relevant standards and guidelines emitted. The aspect of the quality of voltage provided by utilities and influenced by customers in the various points of a network came out only in recent years, in particular as a consequence of the energy market liberalization. Usually, the concept of quality of the delivered energy has been associated mostly to its continuity. Hence the reliability was the main characteristic to be ensured for power systems. Nowadays, the number and duration of interruptions are the “quality indicators” commonly perceived by most customers; for this reason, a short section is dedicated also to network reliability and its regulation. In this contest it should be noted that although the measurement system developed during the research activity belongs to the field of power quality evaluation systems, the information registered in real time by its remote stations can be used to improve the system reliability too. Given the vast scenario of power quality degrading phenomena that usually can occur in distribution networks, the study has been focused on electromagnetic transients affecting line voltages. The outcome of such a study has been the design and realization of a distributed measurement system which continuously monitor the phase signals in different points of a network, detect the occurrence of transients superposed to the fundamental steady state component and register the time of occurrence of such events. The data set is finally used to locate the source of the transient disturbance propagating along the network lines. Most of the oscillatory transients affecting line voltages are due to faults occurring in any point of the distribution system and have to be seen before protection equipment intervention. An important conclusion is that the method can improve the monitored network reliability, since the knowledge of the location of a fault allows the energy manager to reduce as much as possible both the area of the network to be disconnected for protection purposes and the time spent by technical staff to recover the abnormal condition and/or the damage. The part of the thesis presenting the results of such a study and activity is structured as follows: chapter 3 deals with the propagation of electromagnetic transients in power systems by defining characteristics and causes of the phenomena and briefly reporting the theory and approaches used to study transients propagation. Then the state of the art concerning methods to detect and locate faults in distribution networks is presented. Finally the attention is paid on the particular technique adopted for the same purpose during the thesis, and the methods developed on the basis of such approach. Chapter 4 reports the configuration of the distribution networks on which the fault location method has been applied by means of simulations as well as the results obtained case by case. In this way the performance featured by the location procedure firstly in ideal then in realistic operating conditions are tested. In chapter 5 the measurement system designed to implement the transients detection and fault location method is presented. The hardware belonging to the measurement chain of every acquisition channel in remote stations is described. Then, the global measurement system is characterized by considering the non ideal aspects of each device that can concur to the final combined uncertainty on the estimated position of the fault in the network under test. Finally, such parameter is computed according to the Guide to the Expression of Uncertainty in Measurements, by means of a numeric procedure. In the last chapter a device is described that has been designed and realized during the PhD activity aiming at substituting the commercial capacitive voltage divider belonging to the conditioning block of the measurement chain. Such a study has been carried out aiming at providing an alternative to the used transducer that could feature equivalent performance and lower cost. In this way, the economical impact of the investment associated to the whole measurement system would be significantly reduced, making the method application much more feasible.
Resumo:
Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.
Resumo:
In the context of “testing laboratory” one of the most important aspect to deal with is the measurement result. Whenever decisions are based on measurement results, it is important to have some indication of the quality of the results. In every area concerning with noise measurement many standards are available but without an expression of uncertainty, it is impossible to judge whether two results are in compliance or not. ISO/IEC 17025 is an international standard related with the competence of calibration and testing laboratories. It contains the requirements that testing and calibration laboratories have to meet if they wish to demonstrate that they operate to a quality system, are technically competent and are able to generate technically valid results. ISO/IEC 17025 deals specifically with the requirements for the competence of laboratories performing testing and calibration and for the reporting of the results, which may or may not contain opinions and interpretations of the results. The standard requires appropriate methods of analysis to be used for estimating uncertainty of measurement. In this point of view, for a testing laboratory performing sound power measurement according to specific ISO standards and European Directives, the measurement of uncertainties is the most important factor to deal with. Sound power level measurement, according to ISO 3744:1994 , performed with a limited number of microphones distributed over a surface enveloping a source is affected by a certain systematic error and a related standard deviation. Making a comparison of measurement carried out with different microphone arrays is difficult because results are affected by systematic errors and standard deviation that are peculiarities of the number of microphones disposed on the surface, their spatial position and the complexity of the sound field. A statistical approach could give an overview of the difference between sound power level evaluated with different microphone arrays and an evaluation of errors that afflict this kind of measurement. Despite the classical approach that tend to follow the ISO GUM this thesis present a different point of view of the problem related to the comparison of result obtained from different microphone arrays.
Resumo:
In this work we aim to propose a new approach for preliminary epidemiological studies on Standardized Mortality Ratios (SMR) collected in many spatial regions. A preliminary study on SMRs aims to formulate hypotheses to be investigated via individual epidemiological studies that avoid bias carried on by aggregated analyses. Starting from collecting disease counts and calculating expected disease counts by means of reference population disease rates, in each area an SMR is derived as the MLE under the Poisson assumption on each observation. Such estimators have high standard errors in small areas, i.e. where the expected count is low either because of the low population underlying the area or the rarity of the disease under study. Disease mapping models and other techniques for screening disease rates among the map aiming to detect anomalies and possible high-risk areas have been proposed in literature according to the classic and the Bayesian paradigm. Our proposal is approaching this issue by a decision-oriented method, which focus on multiple testing control, without however leaving the preliminary study perspective that an analysis on SMR indicators is asked to. We implement the control of the FDR, a quantity largely used to address multiple comparisons problems in the eld of microarray data analysis but which is not usually employed in disease mapping. Controlling the FDR means providing an estimate of the FDR for a set of rejected null hypotheses. The small areas issue arises diculties in applying traditional methods for FDR estimation, that are usually based only on the p-values knowledge (Benjamini and Hochberg, 1995; Storey, 2003). Tests evaluated by a traditional p-value provide weak power in small areas, where the expected number of disease cases is small. Moreover tests cannot be assumed as independent when spatial correlation between SMRs is expected, neither they are identical distributed when population underlying the map is heterogeneous. The Bayesian paradigm oers a way to overcome the inappropriateness of p-values based methods. Another peculiarity of the present work is to propose a hierarchical full Bayesian model for FDR estimation in testing many null hypothesis of absence of risk.We will use concepts of Bayesian models for disease mapping, referring in particular to the Besag York and Mollié model (1991) often used in practice for its exible prior assumption on the risks distribution across regions. The borrowing of strength between prior and likelihood typical of a hierarchical Bayesian model takes the advantage of evaluating a singular test (i.e. a test in a singular area) by means of all observations in the map under study, rather than just by means of the singular observation. This allows to improve the power test in small areas and addressing more appropriately the spatial correlation issue that suggests that relative risks are closer in spatially contiguous regions. The proposed model aims to estimate the FDR by means of the MCMC estimated posterior probabilities b i's of the null hypothesis (absence of risk) for each area. An estimate of the expected FDR conditional on data (\FDR) can be calculated in any set of b i's relative to areas declared at high-risk (where thenull hypothesis is rejected) by averaging the b i's themselves. The\FDR can be used to provide an easy decision rule for selecting high-risk areas, i.e. selecting as many as possible areas such that the\FDR is non-lower than a prexed value; we call them\FDR based decision (or selection) rules. The sensitivity and specicity of such rule depend on the accuracy of the FDR estimate, the over-estimation of FDR causing a loss of power and the under-estimation of FDR producing a loss of specicity. Moreover, our model has the interesting feature of still being able to provide an estimate of relative risk values as in the Besag York and Mollié model (1991). A simulation study to evaluate the model performance in FDR estimation accuracy, sensitivity and specificity of the decision rule, and goodness of estimation of relative risks, was set up. We chose a real map from which we generated several spatial scenarios whose counts of disease vary according to the spatial correlation degree, the size areas, the number of areas where the null hypothesis is true and the risk level in the latter areas. In summarizing simulation results we will always consider the FDR estimation in sets constituted by all b i's selected lower than a threshold t. We will show graphs of the\FDR and the true FDR (known by simulation) plotted against a threshold t to assess the FDR estimation. Varying the threshold we can learn which FDR values can be accurately estimated by the practitioner willing to apply the model (by the closeness between\FDR and true FDR). By plotting the calculated sensitivity and specicity (both known by simulation) vs the\FDR we can check the sensitivity and specicity of the corresponding\FDR based decision rules. For investigating the over-smoothing level of relative risk estimates we will compare box-plots of such estimates in high-risk areas (known by simulation), obtained by both our model and the classic Besag York Mollié model. All the summary tools are worked out for all simulated scenarios (in total 54 scenarios). Results show that FDR is well estimated (in the worst case we get an overestimation, hence a conservative FDR control) in small areas, low risk levels and spatially correlated risks scenarios, that are our primary aims. In such scenarios we have good estimates of the FDR for all values less or equal than 0.10. The sensitivity of\FDR based decision rules is generally low but specicity is high. In such scenario the use of\FDR = 0:05 or\FDR = 0:10 based selection rule can be suggested. In cases where the number of true alternative hypotheses (number of true high-risk areas) is small, also FDR = 0:15 values are well estimated, and \FDR = 0:15 based decision rules gains power maintaining an high specicity. On the other hand, in non-small areas and non-small risk level scenarios the FDR is under-estimated unless for very small values of it (much lower than 0.05); this resulting in a loss of specicity of a\FDR = 0:05 based decision rule. In such scenario\FDR = 0:05 or, even worse,\FDR = 0:1 based decision rules cannot be suggested because the true FDR is actually much higher. As regards the relative risk estimation, our model achieves almost the same results of the classic Besag York Molliè model. For this reason, our model is interesting for its ability to perform both the estimation of relative risk values and the FDR control, except for non-small areas and large risk level scenarios. A case of study is nally presented to show how the method can be used in epidemiology.
Resumo:
This thesis presents the outcomes of a Ph.D. course in telecommunications engineering. It is focused on the optimization of the physical layer of digital communication systems and it provides innovations for both multi- and single-carrier systems. For the former type we have first addressed the problem of the capacity in presence of several nuisances. Moreover, we have extended the concept of Single Frequency Network to the satellite scenario, and then we have introduced a novel concept in subcarrier data mapping, resulting in a very low PAPR of the OFDM signal. For single carrier systems we have proposed a method to optimize constellation design in presence of a strong distortion, such as the non linear distortion provided by satellites' on board high power amplifier, then we developed a method to calculate the bit/symbol error rate related to a given constellation, achieving an improved accuracy with respect to the traditional Union Bound with no additional complexity. Finally we have designed a low complexity SNR estimator, which saves one-half of multiplication with respect to the ML estimator, and it has similar estimation accuracy.
Resumo:
This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.
Resumo:
The efficient emulation of a many-core architecture is a challenging task, each core could be emulated through a dedicated thread and such threads would be interleaved on an either single-core or a multi-core processor. The high number of context switches will results in an unacceptable performance. To support this kind of application, the GPU computational power is exploited in order to schedule the emulation threads on the GPU cores. This presents a non trivial divergence issue, since GPU computational power is offered through SIMD processing elements, that are forced to synchronously execute the same instruction on different memory portions. Thus, a new emulation technique is introduced in order to overcome this limitation: instead of providing a routine for each ISA opcode, the emulator mimics the behavior of the Micro Architecture level, here instructions are date that a unique routine takes as input. Our new technique has been implemented and compared with the classic emulation approach, in order to investigate the chance of a hybrid solution.
Resumo:
The aim of the research project discussed in this thesis was to study the inhibition of aerobic glycolysis, that is the metabolic pathway exploited by cancer cells for the ATP generation. This observation has led to the evaluation of glycolytic inhibitors as potential anticancer agents. Lactate dehydrogenase (LDH) is the only enzyme whose inhibition should allow a blocking of aerobic glycolysis of tumor cells without damaging the normal cells which, in conditions of normal functional activity and sufficient oxygen supply, do not need this enzyme. In preliminar experiments we demonstrated that oxamic acid and tartronic acid, two LDH competitive inhibitors, impaired aerobic glycolysis and replication of cells from human hepatocellular carcinoma. Therefore, we proposed that the depletion of ATP levels in neoplastic cells, could improved the chemotherapeutic index of associated anticancer drugs; in particular, it was studied the association of oxamic acid and multi-targeted kinase inhibitors. A synergistic effect in combination with sorafenib was observed, and we demonstrated that this was related to the capacity of sorafenib to hinder the oxidative phosphorylation, so that cells were more dependent to aerobic glycolysis. These results linked to LDH blockage encouraged us to search for LDH inhibitors more powerful than oxamic acid; thus, in collaboration with the Department of Pharmaceutical Sciences of Bologna University we identified a new molecule, galloflavin, able to inhibit both A and B isoforms of LDH enzyme. The effects of galloflavin were studied on different human cancer cell lines (hepatocellular carcinoma, breast cancer, Burkitt’s lymphoma). Although exhibiting different power on the tested cell lines, galloflavin was constantly found to inhibit lactate and ATP production and to induce cell death, mainly in the form of apoptosis. Finally, as LDH-A is able to bind single stranded DNA, thus stimulating cell transcription, galloflavin effects were also studied on this other LDH function.