998 resultados para linking number
Resumo:
Executive order signed by Governor Thomas Vilsck
Resumo:
Executive order signed by Governor Thomas Vilsck
Resumo:
Executive order signed by Governor Thomas Vilsck
Resumo:
Executive order signed by Governor Thomas Vilsck
Resumo:
Excecutive order signed by Governor Thomas Vilsck
Resumo:
Excecutive order signed by Governor Thomas Vilsck
Resumo:
Excecutive order signed by Governor Thomas Vilsck
Resumo:
Excecutive order signed by Governor Thomas Vilsck
Resumo:
Excecutive order signed by Governor Thomas Vilsck
Resumo:
Excecutive order signed by Governor Thomas Vilsck
Resumo:
Excecutive order signed by Governor Thomas Vilsck
Resumo:
Background: Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results: Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). Conclusion:This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients.
Resumo:
Copy number variants contribute extensively to inter-individual genomic differences, but little is known about their inter-population variability and diversity. In a previous study (Bosch et al., 2007; 16:2572-2582), we reported that the primate-specific gene family FAM90A, which accounts for as many as 25 members in the human reference assembly, has expanded the number of FAM90A clusters across the hominoid lineage. Here we examined the copy number variability of FAM90A genes in 260 HapMap samples of European, African, and Asian ancestry, and showed significant inter-population differences (p<0.0001). Based on the recent study of Stranger et al. (2007; 315:848-853), we also explored the correlation between copy number variability and expression levels of the FAM90A gene family. Despite the high genomic variability, we found a low correlation between FAM90A copy number and expression levels, which could be due to the action of independent trans-acting factors. Our results show that FAM90A is highly variable in copy number between individuals and between populations. However, this variability has little impact on gene expression levels, thus highlighting the importance of genomic variability for genes located in regions containing segmental duplications.
Resumo:
In the last few years, some of the visionary concepts behind the virtual physiological human began to be demonstrated on various clinical domains, showing great promise for improving healthcare management. In the current work, we provide an overview of image- and biomechanics-based techniques that, when put together, provide a patient-specific pipeline for the management of intracranial aneurysms. The derivation and subsequent integration of morphological, morphodynamic, haemodynamic and structural analyses allow us to extract patient-specific models and information from which diagnostic and prognostic descriptors can be obtained. Linking such new indices with relevant clinical events should bring new insights into the processes behind aneurysm genesis, growth and rupture. The development of techniques for modelling endovascular devices such as stents and coils allows the evaluation of alternative treatment scenarios before the intervention takes place and could also contribute to the understanding and improved design of more effective devices. A key element to facilitate the clinical take-up of all these developments is their comprehensive validation. Although a number of previously published results have shown the accuracy and robustness of individual components, further efforts should be directed to demonstrate the diagnostic and prognostic efficacy of these advanced tools through large-scale clinical trials.
Resumo:
In multiuser detection, the set of users active at any time may be unknown to the receiver. In these conditions, optimum reception consists of detecting simultaneously the set of activeusers and their data, problem that can be solved exactly by applying random-set theory (RST) and Bayesian recursions (BR). However, implementation of optimum receivers may be limited by their complexity, which grows exponentially with the number of potential users. In this paper we examine three strategies leading to reduced-complexity receivers.In particular, we show how a simple approximation of BRs enables the use of Sphere Detection (SD) algorithm, whichexhibits satisfactory performance with limited complexity.