884 resultados para learning by projects
Resumo:
The EVS4CSCL project starts in the context of a Computer Supported Collaborative Learning environment (CSCL). Previous UOC projects created a CSCL generic platform (CLPL) to facilitate the development of CSCL applications. A discussion forum (DF) was the first application developed over the framework. This discussion forum was different from other products on the marketplace because of its focus on the learning process. The DF carried out the specification and elaboration phases from the discussion learning process but there was a lack in the consensus phase. The consensus phase in a learning environment is not something to be achieved but tested. Common tests are done by Electronic Voting System (EVS) tools, but consensus test is not an assessment test. We are not evaluating our students by their answers but by their discussion activity. Our educational EVS would be used as a discussion catalyst proposing a discussion about the results after an initial query or it would be used after a discussion period in order to manifest how the discussion changed the students mind (consensus). It should be also used by the teacher as a quick way to know where the student needs some reinforcement. That is important in a distance-learning environment where there is no direct contact between the teacher and the student and it is difficult to detect the learning lacks. In an educational environment, assessment it is a must and the EVS will provide direct assessment by peer usefulness evaluation, teacher marks on every query created and indirect assessment from statistics regarding the user activity.
Resumo:
Audit report on Highway Safety Projects administered by The Integer Group Midwest for the year ended September 30, 2006
Learning-induced plasticity in auditory spatial representations revealed by electrical neuroimaging.
Resumo:
Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.
Resumo:
Audit report on Highway Safety Projects administered by The Integer Group Midwest for the year ended September 30, 2007
Resumo:
Audit report on Highway Safety Projects administered by The Integer Group Midwest for the year ended September 30, 2008
Resumo:
Audit report on Highway Safety Projects administered by The Integer Group Midwest for the year ended September 30, 2009
Resumo:
Audit report on Highway Safety Projects administered by The Integer Group Midwest for the year ended September 30, 2010
Resumo:
The following data was derived from 1391 reports of participating contractors for the annual 2002 through 2011 reporting periods. The workforce data is reflective of one peak work week for highway contractors during the most active time of the season, the last full week of July. The summary data on pages 4 and 5 was compiled by Iowa DOT staff from the 1391 reports received. Interesting changes and trends have been addressed in the written analysis.
Resumo:
Glucose has been considered the major, if not the exclusive, energy substrate for the brain. But under certain physiological and pathological conditions other substrates, namely monocarboxylates (lactate, pyruvate and ketone bodies), can contribute significantly to satisfy brain energy demands. These monocarboxylates need to be transported across the blood-brain barrier or out of astrocytes into the extracellular space and taken up into neurons. It has been shown that monocarboxylates are transported by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, MCT2 is the predominant neuronal isoform and little is known about the regulation of its expression. Noradrenaline (NA), insulin and IGF-1 were previously shown to enhance the expression of MCT2 in cultured cortical neurons via a translational mechanism. Here we demonstrate that the well known brain neurotrophic factor BDNF enhances MCT2 protein expression in cultured cortical neurons and in synaptoneurosome preparations in a time- and concentrationdependent manner without affecting MCT2 mRNA levels. We observed that BDNF induced MCT2 expression by activation of MAPK as well as PI3K/Akt/mTOR signaling pathways. Furthermore, we investigated the possible post-transcriptional regulation of MCT2 expression by a neuronal miRNA. Then, we demonstrated that BDNF enhanced MCT2 expression in the hippocampus in vivo, in parallel with some post-synaptic proteins such as PSD95 and AMPA receptor GluR2/3 subunits, and two immediate early genes Arc and Zif268 known to be expressed in conditions related to synaptic plasticity. In the last part, we demonstrated in vivo that a downregulation of hippocampal MCT2 via silencing with an appropriate lentiviral vector in mice caused an impairment of working memory without reference memory deficit. In conclusion, these results suggest that regulation of neuronal monocarboxylate transporter MCT2 expression could be a key event in the context of synaptic plasticity, allowing an adequate energy substrate supply in situations of altered synaptic efficacy. - Le glucose représente le substrat énergétique majeur pour le cerveau. Cependant, dans certaines conditions physiologiques ou pathologiques, le cerveau a la capacité d'utiliser des substrats énergéiques appartenant à la classe des monocarboxylates (lactate, pyruvate et corps cétoniques) afin de satisfaire ses besoins énergétiques. Ces monocarboxylates doivent être transportés à travers la barrière hématoencéphalique mais aussi hors des astrocytes vers l'espace extracellulaire puis re-captés par les neurones. Leur transport est assuré par une famillle de transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, les neurones expriment principalement l'isoforme MCT2 mais peu d'informations sont disponibles concernant la régulation de son expression. Il a été montré que la noradrénaline, l'insuline et l'IGF-1 induisent l'expression de MCT2 dans des cultures de neurones corticaux par un mécanisme traductionnel. Dans cette étude nous démontrons dans un premier temps que le facteur neurotrophique BDNF augmente l'expression de MCT2 à la fois dans des cultures de neurones corticaux et dans les préparations synaptoneurosomales selon un décours temporel et une gamme de concentrations propre. Aucun changement n'a été observé concernant les niveaux d'ARNm de MCT2. Nous avons observé que le BDNF induisait l'expression de MCT2 par l'activation simultanée des voies de signalisation MAPK et PI3K/Akt/mTOR. De plus, nous nous sommes intéressés à une potentielle régulation par les micro-ARNs de la synthèse de MCT2. Ensuite, nous avons démontré que le BDNF induit aussi l'expression de MCT2 dans l'hippocampe de la souris en parallèle avec d'autres protéines post-synaptiques telles que PSD95 et GluR2/3 et avec deux « immediate early genes » tels que Arc et Zif268 connus pour être exprimés dans des conditions de plasticité synaptique. Dans un dernier temps, nous avons démontré qu'une diminution d'expression de MCT2 induite par le biais d'un siRNA exprimé via un vecteur lentiviral dans l'hippocampe de souris générait des déficits de mémoire de travail sans affecter la mémoire de référence. En conclusion, ces résultats nous suggèrent que le transporteur aux monocarboxylates neuronal MCT2 serait essentiel pour l'apport énergétique du lactate pour les neurones dans des conditions de haute activité neuronale comme c'est le cas pendant les processus de plasticité synaptique.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
This article reports on a project at the Universitat Oberta de Catalunya (UOC: The Open University of Catalonia, Barcelona) to develop an innovative package of hypermedia-based learning materials for a new course entitled 'Current Issues in Marketing'. The UOC is a distance university entirely based on a virtual campus. The learning materials project was undertaken in order to benefit from the advantages which new communication technologies offer to the teaching of marketing in distance education. The article reviews the main issues involved in incorporating new technologies in learning materials, the development of the learning materials, and their functioning within the hypermedia based virtual campus of the UOC. An empirical study is then carried out in order to evaluate the attitudes of students to the project. Finally, suggestions for improving similar projects in the future are put forward.
Resumo:
Learning objects have been the promise of providing people with high quality learning resources. Initiatives such as MIT Open-CourseWare, MERLOT and others have shown the real possibilities of creating and sharing knowledge through Internet. Thousands of educational resources are available through learning object repositories. We indeed live in an age of content abundance, and content can be considered as infrastructure for building adaptive and personalized learning paths, promoting both formal and informal learning. Nevertheless, although most educational institutions are adopting a more open approach, publishing huge amounts of educational resources, the reality is that these resources are barely used in other educational contexts. This paradox can be partly explained by the dificulties in adapting such resources with respect to language, e-learning standards and specifications and, finally, granularity. Furthermore, if we want our learners to use and take advantage of learning object repositories, we need to provide them with additional services than just browsing and searching for resources. Social networks can be a first step towards creating an open social community of learning around a topic or a subject. In this paper we discuss and analyze the process of using a learning object repository and building a social network on the top of it, with respect to the information architecture needed to capture and store the interaction between learners and resources in form of learning object metadata.
Resumo:
The Universitat Oberta de Catalunya (UOC, Open University of Catalonia) is involved inseveral research projects and educational activities related to the use of Open Educational Resources (OER). Some of the discussed issues in the concept of OER are research issues which are being tackled in two EC projects (OLCOS and SELF). Besides the research part, the UOC aims at developing a virtual centre for analysing and promoting the concept of OERin Europe in the sector of Higher and Further Education. The objectives are to makeinformation and learning services available to provide university management staff,eLearning support centres, faculty and learners with practical information required to create, share and re-use such interoperable digital content, tools and licensing schemes. In the realisation of these objectives, the main activities are the following: to provide organisationaland individual e-learning end-users with orientation; to develop perspectives and useful recommendations in the form of a medium-term Roadmap 2010 for OER in Higher and Further Education in Europe; to offer practical information and support services about how to create, share and re-use open educational content by means of tutorials, guidelines, best practices, and specimen of exemplary open e-learning content; to establish a larger group ofcommitted experts throughout Europe and other continents who not only share theirexpertise but also steer networking, workshops, and clustering efforts; and to foster and support a community of practice in open e-learning content know-how and experiences.
Resumo:
Tämän diplomityön tavoitteena on kuvata tiedonkulkua projektiliiketoimintaa harjoittavassa yrityksessä sekä analysoida kuvausta määrittäen mahdolliset kehityskohdat. Työssätuotetut kuvaukset ja kehityskohtien määrittäminen toimivat pohjana yrityksen kehittäessä projektien hallintaansa tulevaisuudessa. Työssä valitaan tietojohtamisen näkökulma sopivaksi lähestymistavaksi yrityksen toiminnananalysointiin. Haastatteluin kerätyn tutkimusmateriaalin perusteella luodaan prosessikuvaukset jotka mallintavat tietovirtoja yrityksen projektien aikana tapahtuvien prosessien välillä. Kuvausta peilataan tietämyksen luomisen sekä projektien tietojohtamisen teoriaan ja määritetään kehityskohteita. Kehityskohteiden määrittämisen lisäksi ehdotetaan mahdollisia toimenpiteitä tiedon ja tietämyksen hallinnan kehittämiseksi. Kokemusten ja opittujen asioiden sekäpalautteen kerääminen projektien aikana sekä niiden jälkeen havaittiin tärkeimmäksi kehityskohdaksi. Näiden keräämisen voidaan todeta vaativan järjestelmällisyyttä jotta projektien onnistumiset sekä niissä saavutetut parannukset voidaan toistaa jatkossa ja virheet sekä epäonnistumiset sitä vastoin välttää.