948 resultados para lateral ventricle
Resumo:
The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess the lateral diffusivity in the coastal waters of the western part of the Gulf of Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment (September 2010). Immediately after the release, the spreading of the patch is associated with a strong decrease of the SF6 concentrations due to the gas exchange from the ocean to the atmosphere. This has been accurately quantified, evidencing the impact of the strong wind conditions during the first days of this campaign. Few days after the release, as the atmospheric loss of SF6 decreased, lateral diffusivity coefficient at spatial scales of 10 km has been computed using two approaches. First, the evolution of the patch with time was combined with a diffusion-strain model to obtain estimates of the strain rate (γ = 2.5 10- 6 s- 1) and of the lateral diffusivity coefficient (Kh = 23.2 m2s− 1). Second, a steady state model was applied, showing Kh values similar to the previous method after a period of adjustment between 2 and 4.5 days. This implies that after such period, our computation of Kh becomes insensitive to the inclusion of further straining of the patch. Analysis of sea surface temperature satellite imagery shows the presence of a strong front in the study area. The front clearly affected the dynamics within the region and thus the temporal evolution of the patch. Our results are consistent with previous studies in open ocean and demonstrate the success and feasibility of those methods also under small-scale, rapidly-evolving dynamics typical of coastal environments.
Resumo:
Concentrations of the coccidiostat nicarbazin as low as 2 mg/kg in feed can result in violative drug residues arising in poultry liver. A lateral flow device (LFD) was developed for the detection of contaminating concentrations of nicarbazin following solvent extraction of poultry feeds. Test results, as determined by both visual and instrumental measurement, are available within minutes. For 22 feed samples, nicarbazin-free and fortified at 2 mg/kg, the % relative inhibition ranged from 0 to 45% and from 53 to 85%, respectively. Nicarbazin contamination at the critical concentration (2 mg/kg) can be determined in all cases providing the sampling is representative. A wide range of feed samples taken at a mill that incorporated nicarbazin into poultry feed were analyzed. Data generated for these samples by both the LFDs and a mass spectrometric method were compared, and a significant correlation was achieved.
Resumo:
Multilayer samples of white architectural paint potentially have very high evidential value in forensic casework, because the probability that two unrelated samples will have the same sequence of layers is extremely low. However, discrimination between the different layers using optical microscopy is often difficult or impossible. Here, lateral scanning Raman spectroscopy has been used to chemically map the cross-sections of multilayer white paint chips. It was found that the spectra did allow the different layers to be delineated on the basis of their spectral features. The boundaries between different layers were not as sharp as expected, with transitions occurring over length scales of > 20 µm, even with laser spot diameters <4 µm. However, the blurring of the boundaries was not so large as to prevent recording and identification of spectra from each of the layers in the samples. This method clearly provides excellent discrimination between different multilayer white paint samples and can readily be incorporated into existing procedures for examination of paint transfer evidence.
Resumo:
We examine lateralization of lateral displays in convict cichlids, Amatitlania nigrofasciata, and show a population level preference for showing the right side. This enables contesting pairs of fish to align in a head-to-tail posture, facilitating other activities. We found individuals spent a shorter mean time in each left compared with each right lateral display. This lateralization could lead to contesting pairs using a convention to align in a predictable head-to-tail arrangement to facilitate the assessment of fighting ability. It has major implications for the common use of mirror images to study fish aggression, because the 'opponent' would never cooperate and would consistently show the incorrect side when the real fish shows the correct side. With the mirror, the 'normal' head-to-tail orientation cannot be achieved.
A preliminary Study of the Effects of medio-Lateral Rotation on Stresses in the Artificial Hip Joint
Visible Illustration of the Direct, Lateral and Remote Photocatalytic Destruction of Soot by Titania
Resumo:
An experimental investigation of lateral electron transport in thin metallic foil targets irradiated by ultraintense (>= 10(19) W/cm(2)) laser pulses is reported. Two-dimensional spatially resolved ion emission measurements are used to quantify electric-field generation resulting from electron transport. The measurement of large electric fields (similar to 0.1 TV/m) millimeters from the laser focus reveals that lateral energy transport continues long after the laser pulse has decayed. Numerical simulations confirm a very strong enhancement of electron density and electric field at the edges of the target.
Resumo:
Recent studies suggested that the control of hand movements in catching involves continuous vision-based adjustments. More insight into these adjustments may be gained by examining the effects of occluding different parts of the ball trajectory. Here, we examined the effects of such occlusion on lateral hand movements when catching balls approaching from different directions, with the occlusion conditions presented in blocks or in randomized order. The analyses showed that late occlusion only had an effect during the blocked presentation, and early occlusion only during the randomized presentation. During the randomized presentation movement biases were more leftward if the preceding trial was an early occlusion trial. The effect of early occlusion during the randomized presentation suggests that the observed leftward movement bias relates to the rightward visual acceleration inherent to the ball trajectories used, while its absence during the blocked presentation seems to reflect trial-by-trial adaptations in the visuomotor gain, reminiscent of dynamic gain control in the smooth pursuit system. The movement biases during the late occlusion block were interpreted in terms of an incomplete motion extrapolation--a reduction of the velocity gain--caused by the fact that participants never saw the to-be-extrapolated part of the ball trajectory. These results underscore that continuous movement adjustments for catching do not only depend on visual information, but also on visuomotor adaptations based on non-visual information.
Resumo:
MicroRNAs (miRNAs) are single-stranded non-coding RNAs that negatively regulate target gene expression through mRNA cleavage or translational repression. There is mounting evidence that they play critical roles in heart disease. The expression of known miRNAs in the heart has been studied at length by microarray and quantitative PCR but it is becoming evident that microRNA isoforms (isomiRs) are potentially physiologically important. It is well known that left ventricular (patho)physiology is influenced by transmural heterogeneity of cardiomyocyte phenotype, and this likely reflects underlying heterogeneity of gene expression. Given the significant role of miRNAs in regulating gene expression, knowledge of how the miRNA profile varies across the ventricular wall will be crucial to better understand the mechanisms governing transmural physiological heterogeneity. To determinine miRNA/isomiR expression profiles in the rat heart we investigated tissue from different locations across the left ventricular wall using deep sequencing. We detected significant quantities of 145 known rat miRNAs and 68 potential novel orthologs of known miRNAs, in mature, mature* and isomiR formation. Many isomiRs were detected at a higher frequency than their canonical sequence in miRBase and have different predicted targets. The most common miR-133a isomiR was more effective at targeting a construct containing a sequence from the gelsolin gene than was canonical miR-133a, as determined by dual-fluorescence assay. We identified a novel rat miR-1 homolog from a second miR-1 gene; and a novel rat miRNA similar to miR-676. We also cloned and sequenced the rat miR-486 gene which is not in miRBase (v18). Signalling pathways predicted to be targeted by the most highly detected miRNAs include Ubiquitin-mediated Proteolysis, Mitogen-Activated Protein Kinase, Regulation of Actin Cytoskeleton, Wnt signalling, Calcium Signalling, Gap junctions and Arrhythmogenic Right Ventricular Cardiomyopathy. Most miRNAs are not expressed in a gradient across the ventricular wall, with exceptions including miR-10b, miR-21, miR-99b and miR-486.
Resumo:
The ability to measure acetabular cup orientation accurately during total hip arthroplasty represents a significant challenge. The aim of this research was to develop and evaluate a novel low cost mechanical device for measuring operative acetabular inclination. Cup implantation was simulated in two trials using the novel device: firstly involving surgeons and engineers orientating acetabular cups with sawbone pelves at a range of inclination angles (20°-55° in 5° increments); secondly in a simulated intra-operative scenario with surgeons. Target angles were compared with achieved angles and deviations from desired angles were recorded. In addition, all participants orientated cups under the same conditions using two other techniques: freehand and with a propriatory Mechanical Alignment Guide. In the first trial, the mean errors (deviations) using freehand technique, the mechanical alignment guide and the new device were 5.2° +/- 4.3° (range 0.1-22.0), 3.6° +/- 3.9° (range 0.1°-33.6°) and 0.5° +/- 0.4° (range 0.0-1.9) respectively. In the second trial, the mean error for freehand technique, mechanical alignment guide and the new device were 6.2° +/- 4.2° (range 0.2-18.2), 3.8° +/- 3.3° (range 0.0-19.1) and 0.6° +/- 0.5° (range 0.0-1.8) respectively. The new device has the potential to allow the surgeon to choose and record operative inclination accurately during total hip arthroplasty in the lateral decubitus position.