938 resultados para kernel estimate
Resumo:
Although the potential importance of scattering of long-wave radiation by clouds has been recognised, most studies have concentrated on the impact of high clouds and few estimates of the global impact of scattering have been presented. This study shows that scattering in low clouds has a significant impact on outgoing long-wave radiation (OLR) in regions of marine stratocumulus (-3.5 W m(-2) for overcast conditions) where the column water vapour is relatively low. This corresponds to an enhancement of the greenhouse effect of such clouds by 10%. The near-global impact of scattering on OLR is estimated to be -3.0 W m(-2), with low clouds contributing -0.9 W m(-2), mid-level cloud -0.7 W m(-2) and high clouds -1.4 W m(-2). Although this effect appears small compared to the global mean OLR of 240 W m(-2), it indicates that neglect of scattering will lead to an error in cloud long-wave forcing of about 10% and an error in net cloud forcing of about 20%.
Resumo:
Feed samples received by commercial analytical laboratories are often undefined or mixed varieties of forages, originate from various agronomic or geographical areas of the world, are mixtures (e.g., total mixed rations) and are often described incompletely or not at all. Six unified single equation approaches to predict the metabolizable energy (ME) value of feeds determined in sheep fed at maintenance ME intake were evaluated utilizing 78 individual feeds representing 17 different forages, grains, protein meals and by-product feedstuffs. The predictive approaches evaluated were two each from National Research Council [National Research Council (NRC), Nutrient Requirements of Dairy Cattle, seventh revised ed. National Academy Press, Washington, DC, USA, 2001], University of California at Davis (UC Davis) and ADAS (Stratford, UK). Slopes and intercepts for the two ADAS approaches that utilized in vitro digestibility of organic matter and either measured gross energy (GE), or a prediction of GE from component assays, and one UC Davis approach, based upon in vitro gas production and some component assays, differed from both unity and zero, respectively, while this was not the case for the two NRC and one UC Davis approach. However, within these latter three approaches, the goodness of fit (r(2)) increased from the NRC approach utilizing lignin (0.61) to the NRC approach utilizing 48 h in vitro digestion of neutral detergent fibre (NDF:0.72) and to the UC Davis approach utilizing a 30 h in vitro digestion of NDF (0.84). The reason for the difference between the precision of the NRC procedures was the failure of assayed lignin values to accurately predict 48 h in vitro digestion of NDF. However, differences among the six predictive approaches in the number of supporting assays, and their costs, as well as that the NRC approach is actually three related equations requiring categorical description of feeds (making them unsuitable for mixed feeds) while the ADAS and UC Davis approaches are single equations, suggests that the procedure of choice will vary dependent Upon local conditions, specific objectives and the feedstuffs to be evaluated. In contrast to the evaluation of the procedures among feedstuffs, no procedure was able to consistently discriminate the ME values of individual feeds within feedstuffs determined in vivo, suggesting that the quest for an accurate and precise ME predictive approach among and within feeds, may remain to be identified. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The estimation of effective population size from one sample of genotypes has been problematic because most estimators have been proven imprecise or biased. We developed a web-based program, ONeSAMP that uses approximate Bayesian computation to estimate effective population size from a sample of microsatellite genotypes. ONeSAMP requires an input file of sampled individuals' microsatellite genotypes along with information about several sampling and biological parameters. ONeSAMP provides an estimate of effective population size, along with 95% credible limits. We illustrate the use of ONeSAMP with an example data set from a re-introduced population of ibex Capra ibex.
Resumo:
1. Population growth rate (PGR) is central to the theory of population ecology and is crucial for projecting population trends in conservation biology, pest management and wildlife harvesting. Furthermore, PGR is increasingly used to assess the effects of stressors. Image analysis that can automatically count and measure photographed individuals offers a potential methodology for estimating PGR. 2. This study evaluated two ways in which the PGR of Daphnia magna, exposed to different stressors, can be estimated using an image analysis system. The first method estimated PGR as the ratio of counts of individuals obtained at two different times, while the second method estimated PGR as the ratio of population sizes at two different times, where size is measured by the sum of the individuals' surface areas, i.e. total population surface area. This method is attractive if surface area is correlated with reproductive value (RV), as it is for D. magna, because of the theoretical result that PGR is the rate at which the population RV increases. 3. The image analysis system proved reliable and reproducible in counting populations of up to 440 individuals in 5 L of water. Image counts correlated well with manual counts but with a systematic underestimate of about 30%. This does not affect accuracy when estimating PGR as the ratio of two counts. Area estimates of PGR correlated well with count estimates, but were systematically higher, possibly reflecting their greater accuracy in the study situation. 4. Analysis of relevant scenarios suggested the correlation between RV and body size will generally be good for organisms in which fecundity correlates with body size. In these circumstances, area estimation of PGR is theoretically better than count estimation. 5. Synthesis and applications. There are both theoretical and practical advantages to area estimation of population growth rate when individuals' reproductive values are consistently well correlated with their surface areas. Because stressors may affect both the number and quality of individuals, area estimation of population growth rate should improve the accuracy of predicting stress impacts at the population level.
Resumo:
The antioxidant and tyrosinase inhibitory properties of extracts of mango seed kernel (Mangifera indica L.), which is normally discarded when the fruit is processed, were studied. Extracts contained phenolic components by a high antioxidant activity, which was assessed in homogeneous solution by the 2,2-diphenyt-1-picrylhydrazyl radical and 2,2'-azinobis (3-ethylbenzothialozinesulfonic acid) radical cation-scavenging assays and in an emulsion with the ferric thiocyanate test. The extracts also possessed tyrosinase inhibitory activity. Drying conditions and extraction solvent were varied, and optimum conditions for preparation of mango seed kernel extract were found to be sun-drying with ethanol extraction at room temperature. Refluxing in acidified ethanol gave an increase in yield and the obtained extract had the highest content of total phenolics, and also was the most effective antioxidant with the highest radical-scavenging, metal-chelating and tyrosinase inhibitory activity. The extracts did not cause acute irritation of rabbit skins. Our study for the first time reveals the high total phenol content, radical-scavenging, metal-chelating and tyrosinase inhibitory activities of the extract from mango seed kernel. This extract may be suitable for use in food, cosmetic, nutraceutical and pharmaceutical applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: To compare insulin sensitivity (Si) from a frequently sampled intravenous glucose tolerance test (FSIGT) and subsequent minimal model analyses with surrogate measures of insulin sensitivity and resistance and to compare features of the metabolic syndrome between Caucasians and Indian Asians living in the UK. SUBJECTS: In all, 27 healthy male volunteers (14 UK Caucasians and 13 UK Indian Asians), with a mean age of 51.2 +/- 1.5 y, BMI of 25.8 +/- 0.6 kg/m(2) and Si of 2.85 +/- 0.37. MEASUREMENTS: Si was determined from an FSIGT with subsequent minimal model analysis. The concentrations of insulin, glucose and nonesterified fatty acids (NEFA) were analysed in fasting plasma and used to calculate surrogate measure of insulin sensitivity (quantitative insulin sensitivity check index (QUICKI), revised QUICKI) and resistance (homeostasis for insulin resistance (HOMA IR), fasting insulin resistance index (FIRI), Bennetts index, fasting insulin, insulin-to-glucose ratio). Plasma concentrations of triacylglycerol (TAG), total cholesterol, high density cholesterol, (HDL-C) and low density cholesterol, (LDL-C) were also measured in the fasted state. Anthropometric measurements were conducted to determine body-fat distribution. RESULTS: Correlation analysis identified the strongest relationship between Si and the revised QUICKI (r = 0.67; P = 0.000). Significant associations were also observed between Si and QUICKI (r = 0.51; P = 0.007), HOMA IR (r = -0.50; P = 0.009), FIRI and fasting insulin. The Indian Asian group had lower HDL-C (P = 0.001), a higher waist-hip ratio (P = 0.01) and were significantly less insulin sensitive (Si) than the Caucasian group (P = 0.02). CONCLUSION: The revised QUICKI demonstrated a statistically strong relationship with the minimal model. However, it was unable to differentiate between insulin-sensitive and -resistant groups in this study. Future larger studies in population groups with varying degrees of insulin sensitivity are recommended to investigate the general applicability of the revised QUICKI surrogate technique.
Resumo:
A unified approach is proposed for sparse kernel data modelling that includes regression and classification as well as probability density function estimation. The orthogonal-least-squares forward selection method based on the leave-one-out test criteria is presented within this unified data-modelling framework to construct sparse kernel models that generalise well. Examples from regression, classification and density estimation applications are used to illustrate the effectiveness of this generic sparse kernel data modelling approach.
Resumo:
Using the classical Parzen window estimate as the target function, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density estimates. The proposed algorithm incrementally minimises a leave-one-out test error score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights are finally updated using the multiplicative nonnegative quadratic programming algorithm, which has the ability to reduce the model size further. Except for the kernel width, the proposed algorithm has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Two examples are used to demonstrate the ability of this regression-based approach to effectively construct a sparse kernel density estimate with comparable accuracy to that of the full-sample optimised Parzen window density estimate.
Resumo:
A novel sparse kernel density estimator is derived based on a regression approach, which selects a very small subset of significant kernels by means of the D-optimality experimental design criterion using an orthogonal forward selection procedure. The weights of the resulting sparse kernel model are calculated using the multiplicative nonnegative quadratic programming algorithm. The proposed method is computationally attractive, in comparison with many existing kernel density estimation algorithms. Our numerical results also show that the proposed method compares favourably with other existing methods, in terms of both test accuracy and model sparsity, for constructing kernel density estimates.
Resumo:
This paper is addressed to the numerical solving of the rendering equation in realistic image creation. The rendering equation is integral equation describing the light propagation in a scene accordingly to a given illumination model. The used illumination model determines the kernel of the equation under consideration. Nowadays, widely used are the Monte Carlo methods for solving the rendering equation in order to create photorealistic images. In this work we consider the Monte Carlo solving of the rendering equation in the context of the parallel sampling scheme for hemisphere. Our aim is to apply this sampling scheme to stratified Monte Carlo integration method for parallel solving of the rendering equation. The domain for integration of the rendering equation is a hemisphere. We divide the hemispherical domain into a number of equal sub-domains of orthogonal spherical triangles. This domain partitioning allows to solve the rendering equation in parallel. It is known that the Neumann series represent the solution of the integral equation as a infinity sum of integrals. We approximate this sum with a desired truncation error (systematic error) receiving the fixed number of iteration. Then the rendering equation is solved iteratively using Monte Carlo approach. At each iteration we solve multi-dimensional integrals using uniform hemisphere partitioning scheme. An estimate of the rate of convergence is obtained using the stratified Monte Carlo method. This domain partitioning allows easy parallel realization and leads to convergence improvement of the Monte Carlo method. The high performance and Grid computing of the corresponding Monte Carlo scheme are discussed.
Resumo:
The note proposes an efficient nonlinear identification algorithm by combining a locally regularized orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximized model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious model with excellent generalization performance. The D-optimality design criterion further enhances the model efficiency and robustness. An added advantage is that the user only needs to specify a weighting for the D-optimality cost in the combined model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.
Resumo:
Nonlinear system identification is considered using a generalized kernel regression model. Unlike the standard kernel model, which employs a fixed common variance for all the kernel regressors, each kernel regressor in the generalized kernel model has an individually tuned diagonal covariance matrix that is determined by maximizing the correlation between the training data and the regressor using a repeated guided random search based on boosting optimization. An efficient construction algorithm based on orthogonal forward regression with leave-one-out (LOO) test statistic and local regularization (LR) is then used to select a parsimonious generalized kernel regression model from the resulting full regression matrix. The proposed modeling algorithm is fully automatic and the user is not required to specify any criterion to terminate the construction procedure. Experimental results involving two real data sets demonstrate the effectiveness of the proposed nonlinear system identification approach.