960 resultados para intestine epithelium
Resumo:
Two water channel homologs were cloned recently from rat kidney, mercurial-insensitive water channel (MIWC) and glycerol intrinsic protein (GLIP). Polyclonal antibodies were raised against synthetic C-terminal peptides and purified by affinity chromatography. MIWC and GLIP antibodies recognized proteins in rat kidney with an apparent molecular mass of 30 and 27 kDa, respectively, and did not cross-react. By immunofluorescence, MIWC and GLIP were expressed together on the basolateral plasma membrane of collecting duct principal cells in kidney. By immunohistochemistry, MIWC and GLIP were expressed on tracheal epithelial cells with greater expression of GLIP on the basal plasma membrane and MIWC on the lateral membrane; only MIWC was expressed in bronchial epithelia. In eye, GLIP was expressed in conjunctival epithelium, whereas MIWC was found in iris, ciliary body, and neural cell layers in retina. MIWC and GLIP colocalized on the basolateral membrane of villus epithelial cells in colon and brain ependymal cells. Expression of MIWC and GLIP was not detected in small intestine, liver, spleen, endothelia, and cells that express water channels CHIP28 or WCH-CD. These studies suggest water/solute transporting roles for MIWC and GLIP in the urinary concentrating mechanism, cerebrospinal fluid absorption, ocular fluid balance, fecal dehydration, and airway humidification. The unexpected membrane colocalization of MIWC and GLIP in several tissues suggests an interaction at the molecular and/or functional levels.
Resumo:
Mutations in the APC (adenomatous polyposis coli) gene appear to be responsible for not only familial adenomatous polyposis but also many sporadic cases of gastrointestinal cancers. Using homologous recombination in mouse embryonic stem cells, we constructed mice that contained a mutant gene encoding a product truncated at a 716 (Apc delta 716). Mendelian transmission of the gene caused most homozygous mice to die in utero before day 8 of gestation. The heterozygotes developed multiple polyps throughout the intestinal tract, mostly in the small intestine. The earliest polyps arose multifocally during the third week after birth, and new polyps continued to appear thereafter. Surprisingly, every nascent polyp consisted of a microadenoma covered with a layer of the normal villous epithelium. These microadenomas originated from single crypts by forming abnormal outpockets into the inner (lacteal) side of the neighboring villi. We carefully dissected such microadenomas from nascent polyps by peeling off the normal epithelium and determined their genotype by PCR: all microadenomas had already lost the wild-type Apc allele, whereas the mutant allele remained unchanged. These results indicate that loss of heterozygosity followed by formation of intravillous microadenomas is responsible for polyposis in Apc delta 716 intestinal mucosa. It is therefore unlikely that the truncated product interacts directly with the wild-type protein and causes the microadenomas by a dominant negative mechanism.
Resumo:
Phytoplasmas are bacteria with a persistent propagative transmission by insect vectors that generates direct and indirect interactions among them. In order to understand these interactions for maize bushy stunt phytoplasma (MBSP) and the leafhopper vector Dalbulus maidis (Hemiptera: Cicadellidae), two research lines were addressed. The first one aimed to determine the indirect effects of maize infection by MBSP on some biological and behavioral parameters of the vector, whereas a second line investigated direct interactions of the phytoplasma with D. maidis during its movement through the vector body following acquisition from plants, and associated microbiota. Indirect effects were investigated in choice experiments in which alighting and oviposition preferences by D. maidis were compared on healthy vs. MBSP-infected plants with variable incubation time (diseased plants with early and advanced symptoms, or still asymptomatic). Likewise, indirect effect of MBSP on the D. maidis biology was determined in two life table experiments in which the vector was reared on healthy vs. MBSP-infected plants expressing advanced disease symptoms or still asymptomatic. Choice experiments showed that alighting and oviposition preferences of D. maidis on MBSP-infected plants compared to healthy plants depend on the pathogen incubation period in the plant. The leafhopper preferred MBSP-infected plants over healthy ones during the asymptomatic phase of the disease, but rejected infected plants with advanced symptoms. The vector was able to acquire MBSP from asymptomatic infected plants shortly (3 days) after inoculation, but transmission efficiency increased when acquisition occurred at later stages of the pathogen incubation period (≥14 days) in the source plants and the test plants showed disease symptoms faster. These results suggest that MBSP modulates D. maidis preference for asymptomatic infected plants in the early stages of the crop, allowing rapid spread of this pathogen. Maize infection by the phytoplasma had a neutral effect on most life table parameters of D. maidis; a lower net reproductivity rate (Ro) was observed in the cohort reared on MBSP-infected plants with advanced symptoms, which was compensated to some extent by a higher sexual ratio. MBSP acquisition by all vector nymphal stadia was confirmed by PCR, and the pathogen as detected in both male and female reproductive organs. Concerning direct MBSP-vector interactions, transmission electron microscopy analyses showed phytoplasma-like cells in the midgut lumen, microvilli and epithelial cells, suggesting that MBSP enters the epithelium midgut through the microvilli wall. Within the epithelial cells, mitochondria and bacteria-like cells (possibly endosymbionts) were observed together with masses of phythoplasma-like cells. In the hemocoel, phytoplasma-like cells grouped into a matrix were also observed in association with bacteria-like cells similar to those observed in the midgut epithelium. Similar associations were found in the salivary gland. Interestingly, in-situ hybridization (FISH) technique revealed a variation in diversity and abundance of the microbiota in intestine and salivary glands of D. maidis adults over time after MBSP acquisition from plants. Sulcia sp., Cardinium sp. and eubacteria increased their abundance over time, whereas Rickettsia sp. decreased. The frequent association of the vector microbiota with the phytoplasma in some tissues of D. maidis suggests that endosymbiotic bacteria may play some role in MBSP-vector interactions.
Resumo:
Experimental ocean acidification leads to a shift in resource allocation and to an increased [HCO3-] within the perivisceral coelomic fluid (PCF) in the Baltic green sea urchin Strongylocentrotus droebachiensis. We investigated putative mechanisms of this pH compensation reaction by evaluating epithelial barrier function and the magnitude of skeleton (stereom) dissolution. In addition, we measured ossicle growth and skeletal stability. Ussing chamber measurements revealed that the intestine formed a barrier for HCO3- and was selective for cation diffusion. In contrast, the peritoneal epithelium was leaky and only formed a barrier for macromolecules. The ossicles of 6 week high CO2-acclimatised sea urchins revealed minor carbonate dissolution, reduced growth but unchanged stability. On the other hand, spines dissolved more severely and were more fragile following acclimatisation to high CO2. Our results indicate that epithelia lining the PCF space contribute to its acid-base regulation. The intestine prevents HCO3- diffusion and thus buffer leakage. In contrast, the leaky peritoneal epithelium allows buffer generation via carbonate dissolution from the surrounding skeletal ossicles. Long-term extracellular acid-base balance must be mediated by active processes, as sea urchins can maintain relatively high extracellular [HCO3-]. The intestinal epithelia are good candidate tissues for this active net import of HCO3- into the PCF. Spines appear to be more vulnerable to ocean acidification which might significantly impact resistance to predation pressure and thus influence fitness of this keystone species.
Resumo:
Transgenic mice expressing the E7 protein of HPV16 from the keratin 14 promoter demonstrate increasing thymic hypertrophy with age. This hypertrophy is associated with increased absolute numbers of all thymocyte types, and with increased cortical and medullary cellularity. In the thymic medulla, increased compartmentalization of the major thymic stromal cell types and expansion of thymic epithelial cell population is observed. Neither an increased rate of immature thymocyte division nor a decreased rate of immature thymocyte death was able to account for the observed hypertrophy. Thymocytes with reduced levels of expression of CD4 and/or CD8 were more abundant in transgenic (tg) mice and became increasingly more so with age. These thymic SP and DP populations with reduced levels of CD4 and/or CD8 markers had a lower rate of apoptosis in the tg than in the non-tg mice. The rate of export of mature thymocytes to peripheral lymphoid organs was less in tg animals relative to the pool of available mature cells, particularly for the increasingly abundant CD4lo population. We therefore suggest that mature thymocytes that would normally die in the thymus gradually accumulated in E7 transgenic animals, perhaps as a consequence of exposure to a hypertrophied E7-expressing thymic epithelium or to factors secreted by this expanded thymic stromal cell population. The K14E7 transgenic mouse thus provides a unique model to study effects of the thymic epithelial cell compartment on thymus development and involution.
Resumo:
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater ( SW). Juvenile C. leucas captured in FW ( 3 mOsm l(-1) kg(-1)) were acclimated to SW ( 980 - 1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities ( 940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypoosmotic to the environment. Plasma Na+, Cl-, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/ K+-ATPase activity. Na+/ K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/ K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/ K+-ATPase activity was 5.6 +/- 0.8 and 9.2 +/- 0.6 mmol Pi mg(-1) protein h(-1), respectively. Na+/ K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4 +/- 1.1 and 3.3 +/- 1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.
Resumo:
The effects of short-term fasting and prolonged fasting during aestivation on the morphology of the proximal small intestine and associated organs were investigated in the green-striped burrowing frog, Cyclorana alboguttata (Anura: Hylidae). Animals were fasted for 1 week while active or for 3-9 months during aestivation. Short-duration fasting (1 week) had little effect on the morphology of the small intestine, whilst prolonged fasting during aestivation induced marked enteropathy including reductions in intestinal mass, length and diameter, longitudinal fold height and tunica muscularis thickness. Enterocyte morphology was also affected markedly by prolonged fasting: enterocyte cross-sectional area and microvillous height were reduced during aestivation, intercellular spaces were visibly reduced and the prevalence of lymphocytes amongst enterocytes was increased. Mitochondria and nuclei were also affected by 9 months of aestivation with major disruptions to mitochondrial cristae and increased clumping of nuclear material and increased infolding of the nuclear envelope. The present study demonstrates that the intestine of an aestivating frog responds to prolonged food deprivation during aestivation by reducing in size, presumably to reduce the energy expenditure of the organ.
Resumo:
Copper and iron metabolism intersect in mammals. Copper deficiency simultaneously leads to decreased iron levels in some tissues and iron deficiency anemia, whereas it results in iron overload in other tissues such as the intestine and liver. The copper requirement of the multicopper ferroxidases hephaestin and ceruloplasmin likely explains this link between copper and iron homeostasis in mammals. We investigated the effect of in vivo and in vitro copper deficiency on hephaestin (Heph) expression and activity. C57BL/6J mice were separated into 2 groups on the day of parturition. One group was fed a copper-deficient diet and another was fed a control diet for 6 wk. Copper-deficient mice had significantly lower hephaestin and ceruloplasmin (~50% of controls) ferroxidase activity. Liver hepcidin expression was significantly downregulated by copper deficiency (~60% of controls), and enterocyte mRNA and protein levels of ferroportin1 were increased to 2.5 and 10 times, respectively, relative to controls, by copper deficiency, indicating a systemic iron deficiency in the copper-deficient mice. Interestingly, hephaestin protein levels were significantly decreased to ~40% of control, suggesting that decreased enterocyte copper content leads to decreased hephaestin synthesis and/or stability. We also examined the effect of copper deficiency on hephaestin in vitro in the HT29 cell line and found dramatically decreased hephaestin synthesis and activity. Both in vivo and in vitro studies indicate that copper is required for the proper processing and/or stability of hephaestin.
Resumo:
Aims: An early adenocarcinoma of the ascending colon was confined to a mass of gut-associated lymphoid tissue (GALT). The first description of an adenocarcinoma of colon differentiating as dome epithelium is presented. Methods and results: A plaque-like carcinoma was identified opposite the ileocaecal valve in an asymptomatic 56-year-old man with a family history of colorectal cancer. Malignant epithelium was confined to a mass of GALT filling but limited to the submucosa, Characterization of the neoplasm was undertaken by means of mucin histochemistry, immunohistochemistry, electron microscopy and assessment of DNA microsatellite instability status. The malignant epithelium comprised well differentiated columnar cells with a microvillous brush border and expressing MUC1, but no goblet cells or expression of MUC2. The demonstration of focal clusters of intraepithelial B-lymphocytes supported the presence of functioning M-cells within the malignant neoplasm. The cancer was DNA microsatellite stable despite the finding of tumour infiltrating lymphocytes. Conclusions: There is evidence for the origin of colorectal neoplasia from dome epithelium in both experimental models and microreconstruction studies of early adenomas in nonpolypotic human colorectal mucose, It is suggested that the lymphocyte-rich subset of colorectal cancer that expresses MUC1 but not MUC2 may be differentiating as dome epithelium of gut-associated lymphoid tissue.
Resumo:
A cell culture model of the gastric epithelial cell surface would prove useful for biopharmaceutical screening of new chemical entities and dosage forms. A successful model should exhibit tight junction formation, maintenance of differentiation and polarity. Conditions for primary culture of guinea-pig gastric mucous epithelial cell monolayers on Tissue Culture Plastic (TCP) and membrane insects (Transwells) were established. Tight junction formation for cells grown on Transwells for three days was assessed by measurement of transepithelial resistance (TEER) and permeability of mannitol and fluorescein. Coating the polycarbonate filter with collagen IV, rather with collagen I, enhanced tight junction formation. TEER for cells grown on Transwells coated with collagen IV was close to that obtained with intact guinea-pig gastric epithelium in vitro. Differentiation was assessed by incorporation of [3H] glucosamine into glycoprotein and by activity of NADPH oxidase, which produces superoxide. Both of these measures were greater for cells grown on filters coated with collagen I than for cells grown on TCP, but no major difference was found between cells grown on collagens I and IV. However, monolayers grown on membranes coated with collagen IV exhibited apically polarized secretion of mucin and superoxide. The proportion of cells, which stained positively for mucin with periodic Schiff reagent, was greater than 95% for all culture conditions. Gastric epithelial monolayers grown on Transwells coated with collagen IV were able to withstand transient (30 min) apical acidification to pH 3, which was associated with a decrease in [3H] mannitol flux and an increase in TEER relative to pH 7.4. The model was used to provide the first direct demonstration that an NSAID (indomethacin) accumulated in gastric epithelial cells exposed to low apical pH. In conclusion, guinea-pig epithelial cells cultured on collagen IV represent a promising model of the gastric surface epithelium suitable for screening procedures.