837 resultados para integrated-process model
Resumo:
We investigate the Student-t process as an alternative to the Gaussian process as a non-parametric prior over functions. We derive closed form expressions for the marginal likelihood and predictive distribution of a Student-t process, by integrating away an inverse Wishart process prior over the co-variance kernel of a Gaussian process model. We show surprising equivalences between different hierarchical Gaussian process models leading to Student-t processes, and derive a new sampling scheme for the inverse Wishart process, which helps elucidate these equivalences. Overall, we show that a Student-t process can retain the attractive properties of a Gaussian process - a nonparamet-ric representation, analytic marginal and predictive distributions, and easy model selection through covariance kernels - but has enhanced flexibility, and predictive covariances that, unlike a Gaussian process, explicitly depend on the values of training observations. We verify empirically that a Student-t process is especially useful in situations where there are changes in covariance structure, or in applications such as Bayesian optimization, where accurate predictive covariances are critical for good performance. These advantages come at no additional computational cost over Gaussian processes.
Resumo:
传统的软件过程模型大多是静态的、机械的、被动的,它们要求软件工程人员在描述软件过程时预期所有可能发生的情况,并且显式地定义这些问题的解决方案.当软件过程所处的环境发生变化时,软件过程无法自适应地对这些变更作出相应的调整.提出了一种基于Agent的自适应软件过程模型.在这种软件过程模型中,软件过程被描述为一组相互独立而对等的实体——软件过程Agent.这些软件过程Agent能够对软件过程环境的变化主动地、自治地作出反应,动态地确定和变更其行为以实现软件开发的目标.
Resumo:
提出了一种基于模型融合的CMM实施过程建模方法.该方法使用软件过程工程元模型SPEM建立CMM过程模型CPM和企业过程模型EPM,通过融合CPM和EPM来获得CMM实施过程模型C IPM.文中利用带标记的有向图描述过程模型,给出了模型融合方法,并进行了一致性证明.最后通过一个过程模型融合原型工具和实例说明了方法的应用情况.
Resumo:
企业过程模型参数自动优化是一个多参数多目标的系统优化问题.采用线性加权法将其转换成多参数单目标问题的求解,提出基于计算机模拟的企业过程模型参数的自动寻优方法.它将传统的共轭梯度法FR(fletcher reeves)和禁忌搜索算法TS(tabu search)结合起来,采用FR法进行局部寻优,由TS法实现从当前局部最优点向全域范围内的更优区域转移,循环往复达到求出全域范围最优点的目的.改进了FR法与TS法,克服了各自的缺陷,并提出禁忌区域表的概念,从而加速寻优过程.它适用于任意多维曲面的多极值问题最优求解,对企业进行BPR(business process reengineering)和实施ERP(enterprise resource planning)管理有较大的指导意义.
Resumo:
1.引言面对数字经济时代带来的不断增长的竞争压力,企业逐步寻求新的商业运作模式以适应这种变化。随着信息技术和Internet技术的迅猛发展,为适应这种变化提供了条件。企业不再满足于孤立、零散的办公自动化和计算机应用,而是需要综合的、集成化的解决方案。作为一种对常规性事务进行管理、集成的技术,工作流管理系统(Workflow ManagementSystem,WMS)的出现是必然的。如何建立企业业务过程模型是工作流管理系统的核心问题。
Resumo:
本文简要介绍了发明问题解决理论TRIZ和机算机辅助创新软件Pro/Innovator的主要内容,建立了基于创新理论TRIZ和CAI软件的创新问题解决流程模型,作为特例建立了Pro/Innovator1.0的简化流程图,最后用软件完成了一个工程实例问题的创新设计。
Resumo:
为解决供应链生产计划协调问题,通过市场价格和中间库存因素使供应链上下游企业结合成一个整体,建立一种供应链上下游一体化计划模型,从整体考虑供应链合作计划问题.为获取问题的可行解,采用拉格朗日松弛技术进行优化,为供应链上下游企业在信息共享条件下实现"多赢"目标,提供了理论依据.仿真结果验证了模型和算法的有效性。
Resumo:
研究了基于智能装配单元的可重构装配线制造系统环境中的产品装配建模方法与装配序列表达机制,提出由产品层次装配模型与生产线装配工艺齿状结构描述相结合的重构装配线装配序列规划与表达方法。
Resumo:
基于PC和多轴运动控制器的开放式数控系统是理想的开放式数控系统。介绍了基于PMAC的开放式数控系统结构形式,PMAC的差补、位置控制、伺服功能、以PMAC和PC机为硬件平台搭建了数控系统,并对其硬件构成和软件设计结构进行了分析。着重从软件设计的角度,介绍了PTALK控件的功能和作用,对数控系统软件构成进行了详细的阐述。并设计出了友好的用户界面,在实际应用中具有重要意义。
Resumo:
对当前卷烟厂制丝线计划与调度管理中存在的不足进行了介绍,并在建立制丝生产线生产过程模型的基础上,提出了用于解决问题的计划仿真系统,对所采用的仿真策略进行了详细介绍。采用这一策略实现的仿真系统能够很方便的适应于其他行业类型的仿真。
Resumo:
分析了时间Petri网的激发规则、托肯可用时间和抑制弧等特性,以及制造过程中随机故障的特征。提出不同的时间关联方式对应的多种建模方法,考虑不同的故障发现模式、不同的作业处理策略,建立相应的单机制造过程模型。在此基础上采用模块化和层次化方法可以构建复杂制造过程的时间着色Petri网模型,并可以转换成仿真模型,进一步分析随机机器故障对制造过程性能的影响。
Resumo:
针对多品种批量生产类型,建立了调度约束的生产计划与调度集成优化模型。模型的目标函数是使总调整费用、库存费用及生产费用之和最小,约束函数包括库存平衡约束和生产能力约束,同时考虑了调度约束,即工序顺序约束和工件在单机上的加工能力约束,保证了计划可行性。该模型为两层混合整数规划模型,对其求解综合运用了遗传算法和启发式规则,提出了混合启发式求解算法。最后,针对某机床厂多品种批量生产类型车间进行了实例应用,对车间零件月份作业计划进行分解,得到各工段单元零件周作业计划,确定了零件各周生产批量与投产顺序。
Resumo:
Facing the problems that Dagang region of Huanghua Depression has high exploration degree and its remaining resource potential and structure are not clear, the theory of Petroleum Accumulation System (PAS) is applied to divide and evaluate the oil/gas systems quantitatively. Then, the petroleum accumulation systems are taken as units to forecast and analyse the oil/gas resources and their structure using statistical methods of sampling analysis of discovery process model and generalized pareto distribution model. The exploration benefit of the unit is estimated using exploration simulation methods. On the basis of the above study, the resource potential of Huanghua Depression is discussed.Huanghua Depression can be diveded into four petroleum accumulation systems, i.e. North PAS5 Middle Qibei PAS, Middle Qinan PAS and South PAS. Each PAS can be diveded futher into several sub- PASs. Using the basic princple of Analytical Hierarchy Process, the method of quantitative evaluation of PAS is established. Then the elements and maturity of PAS are evaluated quantitatively.Taking migration and accumulation units and sub-PASs as prediction units, sampling analysis of discovery process model and generalized pareto distribution model are applied comparatively to forecast the resource structure of eight migration and accumulation units in six PASs of medium-high exploration degree. The results of these two methods are contrasted and analyzed. An examination of X2 data of these two models from exploration samples shows that generalized pareto distribution model is more effective than sampling analysis of discovery process model in Huanghua Depression. It is concluded that minimum and maximum size of reservoir and discovery sequence of reservoirs are the sensitive parameters of these two methods.Aiming at the difficult problem of forecast in low exploration degree, by analysis of relativity between resource parameters and their possible influential geological factors, forecast models for resource parameters were established by liner regressing. Then the resource structure is forecasted in PASs of low exploration degree.Based on the forecast results, beginning with the analysis of exploration history and benefit variation, the exploration benefit variation of the above PASs is fitted effectively using exploration simulation method. The single well exploration benefit of remaining oil resource is also forecasted reasonably.The results of resource forecast show that the total oil resources ofHuanghua Depression amount to 2.28 b illion ton. By the end o f 2 003, the accumulative total proved oil reserve is 0.90 billion ton and the remaining oil resources is 1.38 billion ton. The remaining oil resource is concentrated in Kongdian-Dengmingshi, Banqiao-Beidagang, Qidong-Yangerzhuang and Baidong-Qizhong sub-PASs.