988 resultados para hydrogen storage alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the second-generation OptiMal test for malaria diagnosis under various storage conditions. It detected all the positive samples, except for two Plasmodium malariae samples. Further research evaluating diverse environmental conditions are important for ICT test applicability in Brazilian malaria areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O desenvolvimento de novos materiais e a sua caracterização é de extrema importância no dimensionamento e construção de equipamentos criogénicos. A empresa Versarien desenvolveu uma técnica capaz de produzir cobre poroso, conseguindo controlar a porosidade e o tamanho de poros. Os materiais porosos são de especial interesse para dispositivos criogénicos em aplicações espaciais. Um exemplo desta aplicação são as unidades de armazenamento de energia (Energy Storage Units-ESU), onde um material poroso é usado em ausência de gravidade para reter um líquido criogénico por capilaridade, de modo a manter dispositivos a uma temperatura baixa e constante. Neste caso, um material poroso de elevada condutividade térmica, como o cobre, seria de grande interesse uma vez que permite obter uma boa homogeneidade de temperatura na célula. Neste trabalho foi desenvolvido um sistema para medir a condutividade térmica deste material, entre 15 e 260 K, para porosidades entre 50% e 80%, utilizando um criorrefrigerador 2 W @ 20 K. Estas medições permitiram determinar que a pureza do cobre poroso se encontra entre RRR20 (RRR: Residual-resistivity ratio) e RRR10, apresentando uma tortuosidade que se encontra de acordo com um modelo simples descrito nesta dissertação. Foi ainda desenhado, construído e testado um criostato portátil, que apenas necessita de azoto líquido e de bombeamento primário para que se possam realizar medições de condutividade térmica entre 77 e 300 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continued economic and population development puts additional pressure on the already scarce energetic sources. Thus there is a growing urge to adopt a sustainable plan able to meet the present and future energetic demands. Since the last two decades, solar trough technology has been demonstrating to be a reliable alternative to fossil fuels. Currently, the trough industry seeks, by optimizing energy conversion, to drive the cost of electricity down and therefore to place itself as main player in the next energetic age. One of the issues that lately have gained considerable relevance came from the observation of significant heat losses in a large number of receiver modules. These heat losses were attributed to slow permeation of traces of hydrogen gas through the steel tube wall into the vacuum annulus. The presence of hydrogen gas in the absorber tube results from the decomposition of heat transfer fluid due to the long-term exposure to 400°C. The permeated hydrogen acts as heat conduction mean leading to a decrease in the receivers performance and thus its lifetime. In order to prevent hydrogen accumulation, it has been common practice to incorporate hydrogen getters in the vacuum annulus of the receivers. Nevertheless these materials are not only expensive but their gas absorbing capacity can be insufficient to assure the required level of vacuum for the receivers to function. In this work the building of a permeation measurement device, vulnerabilities detected in the construction process and its overcome are described. Furthermore an experimental procedure was optimized and the obtained permeability results, of different samples were evaluated. The data was compared to measurements performed by an external entity. The reliability of the comparative data was also addressed. In the end conclusions on the permeability results for the different samples characteristics, feasibility of the measurement device are drawn and recommendations on future line of work were made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of devices based on heterostructured thin films of biomolecules conveys a huge contribution on biomedical field. However, to achieve high efficiency of these devices, the storage of water molecules into these heterostructures, in order to maintain the biological molecules hydrated, is mandatory. Such hydrated environment may be achieved with lipids molecules which have the ability to rearrange spontaneously into vesicles creating a stable barrier between two aqueous compartments. Yet it is necessary to find conditions that lead to the immobilization of whole vesicles on the heterostructures. In this work, the conditions that govern the deposition of open and closed liposomes of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (sodium Salt) (DPPG) onto polyelectrolytes cushions prepared by the layer-by-layer (LbL) method were analyzed. Electronic transitions of DPPG molecules as well as absorption coefficients were obtained by vacuum ultraviolet spectroscopy, while the elemental composition of the heterostructures was characterized by x-ray photoelectron spectroscopy (XPS). The presence of water molecules in the films was inferred by XPS and infrared spectroscopy. Quartz crystal microbalance (QCM) data analysis allowed to conclude that, in certain cases, the DPPG adsorbed amount is dependent of the bilayers number already adsorbed. Moreover, the adsorption kinetics curves of both adsorbed amount and surface roughness allowed to determine the kinetics parameters that are related with adsorption processes namely, electrostatic forces, liposomes diffusion and lipids re-organization on surface. Scaling exponents attained from atomic force microscopy images statistical analysis demonstrate that DPPG vesicles adsorption mechanism is ruled by the diffusion Villain model confirming that adsorption is governed by electrostatic forces. The power spectral density treatment enabled a thorough description of the accessible surface of the samples as well as of its inner structural properties. These outcomes proved that surface roughness influences the adsorption of DPPG liposomes onto surfaces covered by a polyelectrolyte layer. Thus, low roughness was shown to induce liposome rupture creating a lipid bilayer while high roughness allows the adsorption of whole liposomes. In addition, the fraction of open liposomes calculated from the normalized maximum adsorbed amounts decreases with the cushion roughness increase, allowing us to conclude that the surface roughness is a crucial variable that governs the adsorption of open or whole liposomes. This conclusion is fundamental for the development of well-designed sensors based on functional biomolecules incorporated in liposomes. Indeed, LbL films composed of polyelectrolytes and liposomes with and without melanin encapsulated were successfully applied to sensors of olive oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermal Energy Storage Unit (ESU) could be used to attenuate inherent temperature fluctuations of a cold finger, either from a cryocooler working or due to sudden income heat bursts. An ESU directly coupled to the cold source acts as a thermal buffer temporarily increasing its cooling capacity and providing a better thermal stability of the cold finger (“Power Booster mode”). The energy storage units presented here use an enthalpy reservoir based on the high latent heat of the liquid-vapour transition of neon in the temperature range 38 - 44 K to store up to 900 J, and that uses a 6 liters expansion volume at RT in order to work as a closed system. Experimental results in the power booster mode will be described: in this case, the liquid neon cell was directly coupled to the cold finger of the working cryocooler, its volume (12 cm3) allowing it to store 450 J at around 40 K. 10 W heat bursts were applied, leading to liquid evaporation, with quite reduced temperature changes. The liquid neon reservoir can also work as a temporary cold source to be used after stopping the cryocooler, allowing for a vibration-free environment. In this case the enthalpy reservoir implemented (24 cm3) was linked to the cryocooler cold finger through a gas gap heat switch for thermal coupling/decoupling of the cold finger. We will show that, by controlling the enthalpy reservoir’s pressure, 900 J can be stored at a constant temperature of 40 K as in a triple-point ESU.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices, implemented as a software,describes quite well the experimental results. Solutions to improve these devices are also proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices,implemented as a software, describes quite well the experimental results. Solutions to improve these devices are also proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: The capacity to overcome the oxidative stress imposed by phagocytes seems to be critical for Candida species to cause invasive candidiasis. METHODS: To better characterize the oxidative stress response (OSR) of 8 clinically relevant Candida sp., glutathione, a vital component of the intracellular redox balance, was measured using the 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB)-glutathione disulfide (GSSG) reductase reconversion method; the total antioxidant capacity (TAC) was measured using a modified method based on the decolorization of the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic) acid radical cation (ABTS*+). Both methods were used with cellular Candida sp. extracts treated or not with hydrogen peroxide (0.5 mM). RESULTS: Oxidative stress induced by hydrogen peroxide clearly reduced intracellular glutathione levels. This depletion was stronger in Candida albicans and the levels of glutathione in untreated cells were also higher in this species. The TAC demonstrated intra-specific variation. CONCLUSIONS: Glutathione levels did not correlate with the measured TAC values, despite this being the most important non-enzymatic intracellular antioxidant molecule. The results indicate that the isolated measurement of TAC does not give a clear picture of the ability of a given Candida sp. to respond to oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scarcity of fuels, changes in environmental policy and in society increased the interest in generating electric energy from renewable energy sources (RES) for a sustainable energy supply in the future. The main problem of RES as solar and wind energy, which represent a main pillar of this transition, is that they cannot supply constant power output. This results inter alia in an increased demand of backup technologies as batteries to assure electricity system safety. The diffusion of energy storage technologies is highly dependent on the energy system and transport transition pathways which might lead to a replacement or reconfiguration of embedded socio-technical practices and regimes (by creating new standards or dominant designs, changing regulations, infrastructure and user patterns). The success of this technology is dependent on hardly predictable future technical advances, actor preferences, development of competing technologies and designs, diverging interests of actors, future cost efficiencies, environmental performance, the evolution of market demand and design and evolution of our society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the report for the unit “Métodos Interactivos de Participação e Decisão A” (Interactive methods of participation and decision A), coordinated by Prof. Lia Maldonado Teles de Vasconcelos and Prof. Nuno Miguel Ribeiro Videira Costa. This unit was provided for the PhD Program in Technology Assessment in 2015/2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper assesses the feasibility of impregnation/encasement of phase change materials (PCMs) in lightweight aggregates (LWAs). An impregnation process was adopted to carry out the encasement study of two different PCMs in four different LWAs. The leakage of the impregnated/encased PCMs was studied when they were submitted to freeze/thawing and oven drying tests, separately. The results confirmed that, the impregnation/encasement method is effective with respect to the large thermal energy storage density, and can be suitable for applications were PCMs cannot be incorporated directly such as asphalt road pavements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work focuses on the use of the life cycle assessment (LCA) and life cycle costing (LCC)methodologies to evaluate environmental and economic impacts of polymers and polymer composites materials and products. Initially a literature review is performed in order to assess the scope and limitations of existing LCA and LCC studies on these topics. Then, a case study, based on the production of a water storage glass-fibre reinforced polymer (GFRP) composite storage tank, is presented. The storage tank was evaluated via a LCA/LCC integrated model, a novel way of analysing the life cycle (LC) environmental and economic performances of structural products. The overarching conclusion of the review is that the environmental and economic performances of polymers composites in non-mobile applications are seldom assessed and never in a combined integrated way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacuri (Platonia insignis, Mart.) is one of the most important among Amazonian fruits. However, little is known about its postharvest physiology, such as maturity stages, changes during ambient storage, and respiratory pattern. Fruits were harvested at three maturity stages based on epicarp colour: dark green, light green, and turning (50% yellow), in order to determine colour modification and respiratory pattern during ambient storage (25.2 ºC, 75.1 % RH). Fruit of all maturity stages showed, after three days of harvest, a non-climacteric respiratory pattern, with turning fruit presenting the highest CO2 production rate until the fourth storage day (177.63 mg.CO2.kg-1.h-1). Yellowing increased throughout storage as related to lightness, chromaticity, and hue angle reductions. Turning fruit can be stored at ambient conditions for up to 10 days without any loss in marketability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto.