957 resultados para hard chromium electroplating
Resumo:
Soil microcosms contaminated with crude oil with or without chromium and copper were monitored over a period of 90 days for microbial respiration, biomass, and for dehydrogenase, lipase, acid phosphatase, and arylsulfatase activities. In addition, the community structure was followed by enumerating the total heterotrophic and oil-degrading viable bacteria and by performing a denaturing gradient gel electrophoresis (DGGE) of the PCR amplified 16S rDNA. A significant difference was observed for biochemical activities and microbial community structures between the microcosms comprised of uncontaminated soil, soil contaminated with crude oil and soil contaminated with crude oil and heavy metals. The easily measured soil enzyme activities correlated well with microbial population levels, community structures and rates of respiration (CO2 production). The estimation of microbial responses to soil contamination provides a more thorough understanding of the microbial community function in contaminated soil, in situations where technical and financial resources are limited and may be useful in addressing bioremediation treatability and effectiveness. (C) 2012 Published by Elsevier Ltd.
Resumo:
PURPOSE. Adequate passive-fitting of one-piece cast 3-element implant-supported frameworks is hard to achieve. This short communication aims to present an alternative method for section of one-piece cast frameworks and for casting implant-supported frameworks. MATERIALS AND METHODS. Three-unit implant-supported nickel-chromium (Ni-Cr) frameworks were tested for vertical misfit (n = 6). The frameworks were cast as one-piece (Group A) and later transversally sectioned through a diagonal axis (Group B) and compared to frameworks that were cast diagonally separated (Group C). All separated frameworks were laser welded. Only one side of the frameworks was screwed. RESULTS. The results on the tightened side were significantly lower in Group C (6.43 +/- 3.24 mu m) when compared to Groups A (16.50 +/- 7.55 mu m) and B (16.27 +/- 1.71 mu m) (P<.05). On the opposite side, the diagonal section of the one-piece castings for laser welding showed significant improvement in the levels of misfit of the frameworks (Group A, 58.66 +/- 14.30 mu m; Group B, 39.4.8 +/- 12.03 mu m; Group C, 23.13 +/- 8.24 mu m) (P<.05). CONCLUSION. Casting diagonally sectioned frameworks lowers the misfit levels. Lower misfit levels for the frameworks can be achieved by diagonally sectioning one-piece frameworks. [J Adv Prosthodont 2012;4:89-92]
Resumo:
A comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400 degrees C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (epsilon-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about similar to 43 mu m after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper we investigate the solubility of a hard-sphere gas in a solvent modeled as an associating lattice gas. The solution phase diagram for solute at 5% is compared with the phase diagram of the original solute free model. Model properties are investigated both through Monte Carlo simulations and a cluster approximation. The model solubility is computed via simulations and is shown to exhibit a minimum as a function of temperature. The line of minimum solubility (TmS) coincides with the line of maximum density (TMD) for different solvent chemical potentials, in accordance with the literature on continuous realistic models and on the "cavity" picture. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4743635]
Resumo:
Surface properties play an important role in understanding and controlling nanocrystalline materials. The accumulation of dopants on the surface, caused by surface segregation, can therefore significantly affect nanomaterials properties at low doping levels, offering a way to intentionally control nanoparticles features. In this work, we studied the distribution of chromium ions in SnO2 nanoparticles prepared by a liquid precursor route at moderate temperatures (500 degrees C). The powders were characterized by infrared spectroscopy, X-ray diffraction, (scanning) transmission electron microscopy, Electron Energy Loss Spectroscopy, and Mossbauer spectroscopy. We showed that this synthesis method induces a limited solid solution of chromium into SnO2 and a segregation of chromium to the surface. The s-electron density and symmetry of Sn located on the surface were significantly affected by the doping, while Sn located in the bulk remained unchanged. Chromium ions located on the surface and in the bulk showed distinct oxidation states, giving rise to the intense violet color of the nanoparticles suitable for pigment application.
Resumo:
We derive a closed-form result for the leading thermal contributions which appear in the n-dimensional I center dot (3) theory at high temperature. These contributions become local only in the long wavelength and in the static limits, being given by different expressions in these two limits.
Resumo:
Objective: To evaluate hard palate width and height in mouth-breathing children pre- and post-adenotonsillectomy. Methods: We evaluated 44 children in the 3-6 year age bracket, using dental study casts in order to determine palatal height, intercanine width, and intermolar width. The children were divided into two groups: nasal breathing (n = 15) and mouth breathing (n = 29). The children in the latter group underwent adenotonsillectomy. The study casts were obtained prior to adenotonsillectomy, designated time point 1(11), at 13 months after adenotonsillectomy (T2), and at 28 months after adenotonsillectomy (13). Similar periods of observation were obtained for nasal breathing children. Results: At T1, there was a significantly lower intercanine width in mouth breathing children; intermolar width and palate height were similar between groups. After surgery, there was a significant increase in all the analyzed parameters in both groups, probably due to facial growth. Instead, the increase in intercanine width was substantially more prominent in mouth breathing children than in nasal breathing children, and the former difference failed in significance after the procedure. Conclusions: There were no significant differences between the nasal-breathing and mouth-breathing children in terms of intermolar width and palatal height prior to or after tonsillectomy. Although intercanine width was initially narrower in the mouth-breathing children, it showed normalization after the surgical procedure. These results confirm that the restoration of nasal breathing is central to proper occlusal development. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
La dirección soft y hard de recursos humanos desde los principios éticos: una contrastación empírica
Resumo:
[ES] Teniendo en cuenta la importancia de una gestión ética de los recursos humanos, el objetivo del presente trabajo consiste en determinar si las empresas aplican diferentes modelos de gestión. Para ello, se ha tratado de comprobar si las empresas aplican una dirección de recursos humanos (DRRHH) soft o hard y sobre la base de qué perspectivas éticas lo hacen, tratando de contrastar los cuatro modelos de DRRHH propuestos por Greenwood (2004). El estudio empírico realizado a una muestra de 189 empresas con sede en la Comunidad Autónoma de Canarias ha permitido contrastar estos cuatro modelos, así como identificar la existencia de dos nuevos. Estos resultados nos permiten abrir una nueva línea de investigación en la que se tenga en cuenta los aspectos éticos en la gestión de los recursos humanos.
Resumo:
[EN] This paper analyzes the detection and localization performance of the participating face and eye algorithms compared with the Viola Jones detector and four leading commercial face detectors. Performance is characterized under the different conditions and parameterized by per-image brightness and contrast. In localization accuracy for eyes, the groups/companies focusing on long-range face detection outperform leading commercial applications.
Resumo:
The hard X-ray band (10 - 100 keV) has been only observed so far by collimated and coded aperture mask instruments, with a sensitivity and an angular resolution lower than two orders of magnitude as respects the current X-ray focusing telescopes operating below 10 - 15 keV. The technological advance in X-ray mirrors and detection systems is now able to extend the X-ray focusing technique to the hard X-ray domain, filling the gap in terms of observational performances and providing a totally new deep view on some of the most energetic phenomena of the Universe. In order to reach a sensitivity of 1 muCrab in the 10 - 40 keV energy range, a great care in the background minimization is required, a common issue for all the hard X-ray focusing telescopes. In the present PhD thesis, a comprehensive analysis of the space radiation environment, the payload design and the resulting prompt X-ray background level is presented, with the aim of driving the feasibility study of the shielding system and assessing the scientific requirements of the future hard X-ray missions. A Geant4 based multi-mission background simulator, BoGEMMS, is developed to be applied to any high energy mission for which the shielding and instruments performances are required. It allows to interactively create a virtual model of the telescope and expose it to the space radiation environment, tracking the particles along their path and filtering the simulated background counts as a real observation in space. Its flexibility is exploited to evaluate the background spectra of the Simbol-X and NHXM mission, as well as the soft proton scattering by the X-ray optics and the selection of the best shielding configuration. Altough the Simbol-X and NHXM missions are the case studies of the background analysis, the obtained results can be generalized to any future hard X-ray telescope. For this reason, a simplified, ideal payload model is also used to select the major sources of background in LEO. All the results are original contributions to the assessment studies of the cited missions, as part of the background groups activities.
Resumo:
We have performed Monte Carlo and molecular dynamics simulations of suspensions of monodisperse, hard ellipsoids of revolution. Hard-particle models play a key role in statistical mechanics. They are conceptually and computationally simple, and they offer insight into systems in which particle shape is important, including atomic, molecular, colloidal, and granular systems. In the high density phase diagram of prolate hard ellipsoids we have found a new crystal, which is more stable than the stretched FCC structure proposed previously . The new phase, SM2, has a simple monoclinic unit cell containing a basis of two ellipsoids with unequal orientations. The angle of inclination is very soft for length-to-width (aspect) ratio l/w=3, while the other angles are not. A symmetric state of the unit cell exists, related to the densest-known packings of ellipsoids; it is not always the stable one. Our results remove the stretched FCC structure for aspect ratio l/w=3 from the phase diagram of hard, uni-axial ellipsoids. We provide evidence that this holds between aspect ratios 3 and 6, and possibly beyond. Finally, ellipsoids in SM2 at l/w=1.55 exhibit end-over-end flipping, warranting studies of the cross-over to where this dynamics is not possible. Secondly, we studied the dynamics of nearly spherical ellipsoids. In equilibrium, they show a first-order transition from an isotropic phase to a rotator phase, where positions are crystalline but orientations are free. When over-compressing the isotropic phase into the rotator regime, we observed super-Arrhenius slowing down of diffusion and relaxation, and signatures of the cage effect. These features of glassy dynamics are sufficiently strong that asymptotic scaling laws of the Mode-Coupling Theory of the glass transition (MCT) could be tested, and were found to apply. We found strong coupling of positional and orientational degrees of freedom, leading to a common value for the MCT glass-transition volume fraction. Flipping modes were not slowed down significantly. We demonstrated that the results are independent of simulation method, as predicted by MCT. Further, we determined that even intra-cage motion is cooperative. We confirmed the presence of dynamical heterogeneities associated with the cage effect. The transit between cages was seen to occur on short time scales, compared to the time spent in cages; but the transit was shown not to involve displacements distinguishable in character from intra-cage motion. The presence of glassy dynamics was predicted by molecular MCT (MMCT). However, as MMCT disregards crystallization, a test by simulation was required. Glassy dynamics is unusual in monodisperse systems. Crystallization typically intervenes unless polydispersity, network-forming bonds or other asymmetries are introduced. We argue that particle anisometry acts as a sufficient source of disorder to prevent crystallization. This sheds new light on the question of which ingredients are required for glass formation.
Resumo:
When a liquid crystal is confined to a cavity its director field becomes subject to competing forces: on the one hand, the surface of the cavity orients the director field (``surface anchoring''), on the other hand deformations of the director field cost elastic energy. Hence the equilibrium director field is determined by a compromise between surface anchoring and elasticity. One example of a confined liquid crystal that has attracted particular interest from physicists is the nematic droplet. In this thesis a system of hard rods is considered as the simplest model for nematic liquid crystals consisting of elongated molecules. First, systems of hard spherocylinders in a spherical geometry are investigated by means of canonical Monte Carlo simulations. In contrast to previous simulation work on this problem, a continuum model is used. In particular, the effects of ordering near hard curved walls are studied for the low-density regime. With increasing density, first a uniaxial surface film forms and then a biaxial surface film, which eventually fills the entire cavity. We study how the surface order, the adsorption and the shape of the director field depend on the curvature of the wall. We find that orientational ordering at a curved wall in a cavity is stronger than at a flat wall, while adsorption is weaker. For densities above the isotropic-nematic transition, we always find bipolar configurations. As a next step, an extension of the Asakura-Oosawa-Vrij model for colloid-polymer mixtures to anisotropic colloids is considered. By means of computer simulations we study how droplets of hard, rod-like particles optimize their shape and structure under the influence of the osmotic compression caused by the presence of spherical particles that act as depletion agents. At sufficiently high osmotic pressures the rods that make up the drops spontaneously align to turn them into uniaxial nematic liquid crystalline droplets. The nematic droplets or ``tactoids'' that so form are not spherical but elongated, resulting from the competition between the anisotropic surface tension and the elastic deformation of the director field. In agreement with recent theoretical predictions we find that sufficiently small tactoids have a uniform director field, whilst large ones are characterized by a bipolar director field. From the shape and director-field transformation of the droplets we estimate the surface anchoring strength.
Resumo:
X-ray photoemission spectroscopy (XPS) is one of the most universal and powerful tools for investigation of chemical states and electronic structures of materials. The application of hard x-rays increases the inelastic mean free path of the emitted electrons within the solid and thus makes hard x-ray photoelectron spectroscopy (HAXPES) a bulk sensitive probe for solid state research and especially a very effective nondestructive technique to study buried layers.rnThis thesis focuses on the investigation of multilayer structures, used in magnetic tunnel junctions (MTJs), by a number of techniques applying HAXPES. MTJs are the most important components of novel nanoscale devices employed in spintronics. rnThe investigation and deep understanding of the mechanisms responsible for the high performance of such devices and properties of employed magnetic materials that are, in turn, defined by their electronic structure becomes feasible applying HAXPES. Thus the process of B diffusion in CoFeB-based MTJs was investigated with respect to the annealing temperature and its influence on the changes in the electronic structure of CoFeB electrodes that clarify the behaviour and huge TMR ratio values obtained in such devices. These results are presented in chapter 6. The results of investigation of the changes in the valence states of buried off-stoichiometric Co2MnSi electrodes were investigated with respect to the Mn content α and its influence on the observed TMR ratio are described in chapter 7.rnrnMagnetoelectronic properties such as exchange splitting in ferromagnetic materials as well as the macroscopic magnetic ordering can be studied by magnetic circular dichroism in photoemission (MCDAD). It is characterized by the appearance of an asymmetry in the photoemission spectra taken either from the magnetized sample with the reversal of the photon helicity or by reversal of magnetization direction of the sample when the photon helicity direction is fixed. Though recently it has been widely applied for the characterization of surfaces using low energy photons, the bulk properties have stayed inaccessible. Therefore in this work this method was integrated to HAXPES to provide an access to exploration of magnetic phenomena in the buried layers of the complex multilayer structures. Chapter 8 contains the results of the MCDAD measurements employing hard x-rays for exploration of magnetic properties of the common CoFe-based band-ferromagnets as well as half-metallic ferromagnet Co2FeAl-based MTJs.rnrnInasmuch as the magnetoresistive characteristics in spintronic devices are fully defined by the electron spins of ferromagnetic materials their direct measurements always attracted much attention but up to date have been limited by the surface sensitivity of the developed techniques. Chapter 9 presents the results on the successfully performed spin-resolved HAXPES experiment using a spin polarimeter of the SPLEED-type on a buried Co2FeAl0.5Si0.5 magnetic layer. The measurements prove that a spin polarization of about 50 % is retained during the transmission of the photoelectrons emitted from the Fe 2p3/2 state through a 3-nm-thick oxide capping layer.rn
Resumo:
La tesi tratta lo studio del sistema QNX e dello sviluppo di un simulatore di task hard/soft real-time, tramite uso di un meta-scheduler. Al termine dello sviluppo vengono valutate le prestazioni del sistema operativo QNX Neutrino.