472 resultados para haptic grasping


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Contemporary Challenges series - originally sponsored by the Research Deanship of the State University of São Paulo (Unesp) - aims at providing access to essays on crucial issues concerning the Brazilian society as a whole. With the publication of those titles, which systematically avoid unnecessary academic jargon though preserving scientific rigour, the university fulfills one of its essential tasks: that of disseminating the skills and knowledge reared within its quarters. In the present volume, focused upon sociological questions, the authors face the difficult job of grasping the intricate horizon of complexities of Brazilian identity and their presence in the current national dilemmas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we evaluated the relationship between manual preference and intermanual performance asymmetry in reaching of 5-month-old infants. Manual preference was assessed through frequency of reaches toward toys presented at midline, left or right in egocentric coordinates. Intermanual performance asymmetry was evaluated through kinematic analysis. Results showed that performance was predominantly symmetric between hands. Lateral toy positions induced predominance of ipsilateral reaching, while the midline position led to equivalent distribution between right and left handed reaches. No significant correlation between manual preference and intermanual performance asymmetry was observed. These results converge against the notion that manual preference derives from a genetically determined advantage of movement control favoring the right hand. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested the short-term effects of a nonrigid tool, identified as an "anchor system" (e.g., ropes attached to varying weights resting on the floor), on the postural stabilization of blindfolded adults with and without intellectual disabilities (ID). Participants held a pair of anchors one in each hand, under three weight conditions (250 g, 500 g and 1,000 g), while they performed a restricted balance task (standing for 30 s on a balance beam placed on top of a force platform). These conditions were called anchor practice trials. Before and after the practice trials, a condition without anchors was tested. Control practice groups, who practiced blocks of trials without anchors, included individuals with and without ID. The anchor system improved subjects' balance during the standing task, for both groups. For the control groups, the performance of successive trials in the condition without the anchor system showed no improvement in postural stability. The individuals with intellectual disability, as well as their peers without ID, used the haptic cues of nonrigid tools (i.e., the anchor system) to stabilize their posture, and the short-term stabilizing effects appeared to result from their previous use of the anchor system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuptial gift offering is a courtship trait found among several insect orders and some spider families. Recent studies indicate that this gift-giving behavior in spiders represents the male mating effort acting on female receptivity through a mechanism of foraging motivation. However, little attention has been given to the sensory channels that are influencing female acceptance. To understand the role of these sensory channels in female perception of a nuptial gift, we focused on the nuptial gift of the neotropical spider Paratrechalea ornata (Araneae, Trechaleidae). The nuptial gift of this species is composed of a prey item wrapped in silk, and previous works suggest that visual and/or chemical cues may be involved in inducing female grasping behavior. We isolated sensory channels using mimetic nuptial gifts (artificial items) or by manipulating real nuptial gifts. Isolated visual signals were not responsible for female acceptance, whereas chemical signals found within the nuptial gift silk layer induced female acceptance. Our findings clearly indicate that a chemical signal located in the silk of the nuptial gift is the main attractant channel, and we formulated 2 hypotheses to explain the mechanisms of action in the female sensory system. We also discuss the consequences of such signaling over female acceptance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the functional and quantitative differences between the early and delayed use of phototherapy in crushed median nerves. After a crush injury, low-level laser therapy (GaAs) was applied transcutaneously at the injury site, 3 min daily, with a frequency of five treatments per week for 2 weeks. In the early group, the first laser treatment started immediately after surgery, and in the delayed group, after 7 days. The grasping test was used for functional evaluation of the median nerve, before, 10, and 21 days after surgery, when the rats were killed. Three segments of the median nerve were analyzed histomorphometrically by light microscopy and computer analysis. The following features were observed: myelinated fiber and axon diameters, myelin sheath area, g-ratio, density and number of myelinated fibers, and area and number of capillaries. In the proximal segment (site of crush), the nerves of animals submitted to early and delayed treatment showed myelinated fiber diameter and myelin sheath area significantly larger compared to the untreated group. In the distal segment, the myelin sheath area was significantly smaller in the untreated animals compared to the delayed group. The untreated, early, and delayed groups presented a 50, 57, and 81% degree of functional recovery, respectively, at 21 days after injury, with a significant difference between the untreated and delayed groups. The results suggest that the nerves irradiated with low-power laser exhibit myelinated fibers of greater diameter and a better recovery of function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To evaluate the sulcus anatomy and possible correlations between sulcus diameter and white-to-white (WTW) diameter in pseudophakic eyes, data that may be important in the stability of add-on intraocular lenses (IOLs). SETTING: University Eye Hospital, Tuebingen, Germany. DESIGN: Case series. METHODS: In pseudophakic eyes, the axial length (AL) and horizontal WTW were measured by the IOLMaster device. Cross-sectional images were obtained with a 50 MHz ultrasound biomicroscope on the 4 meridians: vertical, horizontal (180 degrees), temporal oblique, and nasal oblique. Sulcus-to-sulcus (STS), angle-to-angle (ATA), and sclera-to-sclera (ScTSc) diameters were measured. The IOL optic diameter (6.0 mm) served as a control. To test reliability, optic measurements were repeated 5 times in a subset of eyes. RESULTS: The vertical ATA and STS diameters were statistically significantly larger than the horizontal diameter (P=.0328 and P=.0216, respectively). There was no statistically significant difference in ScTSc diameters. A weak correlation was found between WTW and horizontal ATA (r = 0.5766, P<.0001) and between WTW and horizontal STS (r = 0.5040, P=.0002). No correlation was found between WTW and horizontal ScTSc (r = 0.2217, P=.1217). CONCLUSIONS: The sulcus anatomy had a vertical oval shape with the vertical meridian being the largest, but it also had variation in the direction of the largest meridian. The WTW measurements showed a weak correlation with STS. In pseudophakic eyes, Soemmerring ring or a bulky haptic may affect the ciliary sulcus anatomy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: To investigate the quality of life of patients with HIV and tuberculosis co-infection and grasping the changes imposed in order to live with both transmissible diseases simultaneously. METHODS: Qualitative-quantitative research, undertaken at a specialized outpatient clinic in Fortaleza, Brazil, between 2009 and 2010, involving 34 co-infected patients. For data collection, a quality of life scale called HAT-QoL was used, which consists of 42 items, as well as open questions to perceive the changes the disease causes. RESULTS: Most participants suffered from pulmonary tuberculosis, were male and their education level was low. Quality of life was impaired in those domains related to economic, sexual and secrecy issues. It was also evidenced that the co-infection imposes changes in daily life that underline and further harm quality of life. CONCLUSION: Experiencing co-infection, despite appropriate treatment, causes changes in the patients' lives, whose repercussions can be mitigated through health-promoting interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prehension in an act of coordinated reaching and grasping. The reaching component is concerned with bringing the hand to object to be grasped (transport phase); the grasping component refers to the shaping of the hand according to the object features (grasping phase) (Jeannerod, 1981). Reaching and grasping involve different muscles, proximal and distal muscles respectively, and are controlled by different parietofrontal circuit (Jeannerod et al., 1995): a medial circuit, involving area of superior parietal lobule and dorsal premotor area 6 (PMd) (dorsomedial visual stream), is mainly concerned with reaching; a lateral circuit, involving the inferior parietal lobule and ventral premotor area 6 (PMv) (dorsolateral visual stream), with grasping. Area V6A is located in the caudalmost part of the superior parietal lobule, so it belongs to the dorsomedial visual stream; it contains neurons sensitive to visual stimuli (Galletti et al. 1993, 1996, 1999) as well as cells sensitive to the direction of gaze (Galletti et al. 1995) and cells showing saccade-related activity (Nakamura et al. 1999; Kutz et al. 2003). Area V6A contains also arm-reaching neurons likely involved in the control of the direction of the arm during movements towards objects in the peripersonal space (Galletti et al. 1997; Fattori et al. 2001). The present results confirm this finding and demonstrate that during the reach-to-grasp the V6A neurons are also modulated by the orientation of the wrist. Experiments were approved by the Bioethical Committee of the University of Bologna and were performed in accordance with National laws on care and use of laboratory animals and with the European Communities Council Directive of 24th November 1986 (86/609/EEC), recently revised by the Council of Europe guidelines (Appendix A of Convention ETS 123). Experiments were performed in two awake Macaca fascicularis. Each monkey was trained to sit in a primate chair with the head restrained to perform reaching and grasping arm movements in complete darkness while gazing a small fixation point. The object to be grasped was a handle that could have different orientation. We recorded neural activity from 163 neurons of the anterior parietal sulcus; 116/163 (71%) neurons were modulated by the reach-to-grasp task during the execution of the forward movements toward the target (epoch MOV), 111/163 (68%) during the pulling of the handle (epoch HOLD) and 102/163 during the execution of backward movements (epoch M2) (t_test, p ≤ 0.05). About the 45% of the tested cells turned out to be sensitive to the orientation of the handle (one way ANOVA, p ≤ 0.05). To study how the distal components of the movement, such as the hand preshaping during the reaching of the handle, could influence the neuronal discharge, we compared the neuronal activity during the reaching movements towards the same spatial location in reach-to-point and reach-to-grasp tasks. Both tasks required proximal arm movements; only the reach-to-grasp task required distal movements to orient the wrist and to shape the hand to grasp the handle. The 56% of V6A cells showed significant differences in the neural discharge (one way ANOVA, p ≤ 0.05) between the reach-to-point and the reach-to-grasp tasks during MOV, 54% during HOLD and 52% during M2. These data show that reaching and grasping are processed by the same population of neurons, providing evidence that the coordination of reaching and grasping takes place much earlier than previously thought, i.e., in the parieto-occipital cortex. The data here reported are in agreement with results of lesions to the medial posterior parietal cortex in both monkeys and humans, and with recent imaging data in humans, all of them indicating a functional coupling in the control of reaching and grasping by the medial parietofrontal circuit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaching and grasping an object is an action that can be performed in light, under visual guidance, as well as in darkness, under proprioceptive control only. Area V6A is a visuomotor area involved in the control of reaching movements. V6A, besides neurons activated by the execution of reaching movements, shows passive somatosensory and visual responses. This suggests fro V6A a multimodal capability of integrating sensory and motor-related information, We wanted to know whether this integration occurrs in reaching movements and in the present study we tested whether the visual feedback influenced the reaching activity of V6A neurons. In order to better address this question, we wanted to interpret the neural data in the light of the kinematic of reaching performance. We used an experimental paradigm that could examine V6A responses in two different visual backgrounds, light and dark. In these conditions, the monkey performed an istructed-delay reaching task moving the hand towards different target positions located in the peripersonal space. During the execution of reaching task, the visual feedback is processed in a variety of patterns of modulation, sometimes not expected. In fact, having already demonstrated in V6A reach-related discharges in absence of visual feedback, we expected two types of neural modulation: 1) the addition of light in the environment enhanced reach-related discharges recorded in the dark; 2) the light left the neural response unmodified. Unexpectedly, the results show a complex pattern of modulation that argues against a simple additive interaction between visual and motor-related signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motorische Bewegungen werden über die visuelle Rückmeldung auf ihre Genauigkeit kontrolliert und ggf. korrigiert. Über einen technischen Eingriff, wie beispielsweise einer Prismenbrille, kann man eine Differenz zwischen optisch wahrgenommener und haptisch erlebter Umwelt erzeugen, um die Fähigkeiten des visuomotorischen Systems zu testen. In dieser Arbeit wurde eine computergestützte Methode entwickelt, eine solche visuomotorische Differenz zu simulieren. Die Versuchspersonen führen eine ballistische Bewegung mit Arm und Hand aus in der Absicht, ein vorgegebenes Ziel zu treffen. Die Trefferpunkte werden durch einen Computer mit Hilfe eines Digitalisierungstablettes aufgenommen. Die visuelle Umwelt, welche den Versuchspersonen präsentiert wird, ist auf einem Monitor dargestellt. Das Monitorabbild – ein Kreuz auf weißem Hintergrund – betrachten die Testpersonen über einen Spiegel. Dieser ist in einem entsprechenden Winkel zwischen Monitor und Digitalisierungstablett angebracht, so dass das Zielbild auf dem Digitalisierungstablett projiziert wird. Die Testpersonen nehmen das Zielkreuz auf dem Digitalisierungstablett liegend wahr. Führt die Versuchsperson eine Zielbewegung aus, können die aufgenommenen Koordinaten als Punkte auf dem Monitor dargestellt werden und die Testperson erhält über diese Punktanzeige ein visuelles Feedback ihrer Bewegung. Der Arbeitsbereich des Digitalisierungstabletts kann über den Computer eingerichtet und so motorische Verschiebungen simuliert werden. Die verschiedenartigen Möglichkeiten dieses Aufbaus wurden zum Teil in Vorversuchen getestet um Fragestellungen, Methodik und technische Einrichtungen aufeinander abzustimmen. Den Hauptversuchen galt besonderes Interesse an der zeitlichen Verzögerung des visuellen Feedbacks sowie dem intermanuellen Transfer. Hierbei ergaben sich folgende Ergebnisse: ● Die Versuchspersonen adaptieren an eine räumlich verschobene Umwelt. Der Adaptationsverlauf lässt sich mit einer Exponentialfunktion mathematisch berechnen und darstellen. ● Dieser Verlauf ist unabhängig von der Art des visuellen Feedbacks. Die Beobachtung der Handbewegung während der Adaptation zeigt die gleiche Zielabfolge wie eine einfache Punktprojektion, die den Trefferort der Bewegung darstellt. ● Der exponentielle Verlauf der Adaptationsbewegung ist unabhängig von den getesteten zeitlichen Verzögerungen des visuellen Feedbacks. ● Die Ergebnisse des Folgeeffektes zeigen, dass bei zunehmender zeitlicher Verzögerung des visuellen Feedbacks während der Adaptationsphase, die Größe des Folgeeffektwertes geringer wird, d.h. die anhaltende Anpassungsleistung an eine visuomotorische Differenz sinkt. ● Die Folgeeffekte weisen individuelle Eigenheiten auf. Die Testpersonen adaptieren verschieden stark an eine simulierte Verschiebung. Ein Vergleich mit den visuomotorischen Herausforderungen im Vorleben der Versuchspersonen ließ vermuten, dass das visuomotorische System des Menschen trainierbar ist und sich - je nach Trainingszustand – unterschiedlich an wahrgenommene Differenzen anpasst. ● Der intermanuelle Transfer konnte unter verschiedenen Bedingungen nachgewiesen werden. ● Ein deutlich stärkerer Folgeeffekt kann beobachtet werden, wenn die wahrgenommene visuomotorische Differenz zwischen Ziel und Trefferpunkt in eine Gehirnhälfte projiziert wird und der Folgeeffekt mit der Hand erfolgt, welche von dieser Hirnhemisphäre gesteuert wird. Der intermanuelle Transfer wird demnach begünstigt, wenn die visuelle Projektion der Fehlerbeobachtung in die Gehirnhälfte erfolgt, die während der Adaptationsphase motorisch passiv ist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation presents the synthesis of a hand exoskeleton (HE) for the rehabilitation of post-stroke patients. Through the analysis of state-of-the-art, a topological classification was proposed. Based on the proposed classification principles, the rehabilitation HEs were systematically analyzed and classified. This classification is helpful to both understand the reason of proposing certain solutions for specific applications and provide some useful guidelines for the design of a new HE, that was actually the primary motivation of this study. Further to this classification, a novel rehabilitation HE was designed to support patients in cylindrical shape grasping tasks with the aim of recovering the basic functions of manipulation. The proposed device comprises five planar mechanisms, one per finger, globally actuated by two electric motors. Indeed, the thumb flexion/extension movement is controlled by one actuator whereas a second actuator is devoted to the control of the flexion/extension of the other four fingers. By focusing on the single finger mechanism, intended as the basic model of the targeted HE, the feasibility study of three different 1 DOF mechanisms are analyzed: a 6-link mechanism, that is connected to the human finger only at its tip, an 8-link and a 12-link mechanisms where phalanges and articulations are part of the kinematic chain. The advantages and drawbacks of each mechanism are deeply analyzed with respect to targeted requirements: the 12-link mechanism was selected as the most suitable solution. The dimensional synthesis based on the Burmester theory as well as kinematic and static analyses were separately done for all fingers in order to satisfy the desired specifications. The HE was finally designed and a prototype was built. The experimental results of the first tests are promising and demonstrate the potential for clinical applications of the proposed device in robot-assisted training of the human hand for grasping functions.