389 resultados para guanine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clostridium difficile is a leading cause of nosocomial infections, causing a spectrum of diseases ranging from diarrhoea to pseudomembranous colitis triggered by a range of virulence factors including C. difficile toxins A (TcdA) and B (TcdB). TcdA and TcdB are monoglucosyltransferases that irreversibly glycosylate small Rho GTPases, inhibiting their ability to interact with their effectors, guanine nucleotide exchange factors, and membrane partners, leading to disruption of downstream signalling pathways and cell death. In addition, TcdB targets the mitochondria, inducing the intrinsic apoptotic pathway resulting in TcdB-mediated apoptosis. Modulation of apoptosis is a common strategy used by infectious agents. Recently, we have shown that the enteropathogenic Escherichia coli (EPEC) type III secretion system effector NleH has a broad-range anti-apoptotic activity. In this study we examined the effects of NleH on cells challenged with TcdB. During infection with wild-type EPEC, NleH inhibited TcdB-induced apoptosis at both low and high toxin concentrations. Transfected nleH1 alone was sufficient to block TcdB-induced cell rounding, nuclear condensation, mitochondrial swelling and lysis, and activation of caspase-3. These results show that NleH acts via a global anti-apoptotic pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Vasodilator-Stimulated Phosphoprotein (VASP) is involved in the inhibition of agonist-induced platelet aggregation by cyclic nucleotides and the adhesion of platelets to the vascular wall. αIIbβ3 is the main integrin responsible for platelet activation and Rap1b plays a key role in integrin signalling. We investigated whether VASP is involved in the regulation of Rap1b in platelets since VASP-null platelets exhibit augmented adhesion to endothelial cells in vivo.

Methods: Washed platelets from wild type and VASP-deficient mice were stimulated with thrombin, the purinergic receptors agonist ADP, or the thromboxane A2 receptor agonist U46619 and Rap1b activation was measured using the GST-RalGDS-RBD binding assay. Interaction of VASP and Crkl was investigated by co-immunoprecipitation, confocal microscopy, and pull-down assays using Crkl domains expressed as GST-fusion proteins.

Results: Surprisingly, we found that activation of Rap1b in response to thrombin, ADP, or U46619 was significantly reduced in platelets from VASP-null mice compared to platelets from wild type mice. However, inhibition of thrombin-induced activation of Rap1b by nitric oxide was similar in platelets from wild type and VASP-null mice indicating that the NO/cGMP/PKG pathway controls inhibition of Rap1b independently from VASP. To understand how VASP regulated Rap1b, we investigated association between VASP and the Crk-like protein (Crkl), an adapter protein which activates the Rap1b guanine nucleotide exchange factor C3G. We demonstrated the formation of a Crkl/VASP complex by showing that: 1) Crkl co-immunoprecipitated VASP from platelet lysates; 2) Crkl and VASP dynamically co-localized at actin-rich protrusions reminiscent of focal adhesions, filopodia, and lamellipodia upon platelet spreading on fibronectin; 3) recombinant VASP bound directly to the N-terminal SH3 domain of Crkl; 4) PKA-mediated VASP phosphorylation on Ser157 abrogated the binding of Crkl.

Conclusions: We identified Crkl as a novel protein interacting with VASP in platelets. We propose that the C3G/Crkl/VASP complex plays a role in the regulation of Rap1b and this explains, at least in part, the reduced agonist-induced activation of Rap1b in VASP-null platelets. In addition, the fact that PKA-dependent VASP phosphorylation abrogated its interaction with Crkl may provide, at least in part, a rationale for the PKA-dependent inhibition of Rap1b and platelet aggregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present invention relates to a logic gate, comprising a metamaterial surface enhanced Raman scattering (MetaSERS) sensor, comprising (a) alphabetical metamaterials in the form of split ring resonators operating in the wavelength range of from 560 to 2200 nm; and (b) a guanine (G) and thymine (T)-rich oligonucleotide that can, upon presence of potassium cations (K+), fold into a G-quadruplex structure, and in presence of Hg2+, form a T-Hg2+-T hairpin complex that inhibits or disrupts the G-quadruplex structure formed in presence of K+, as well as methods of operating and using such a logic gate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TORRES, F ; FILHO, M.S. ; ANTUNES, C. ; KALININE, E. ; ANTONIOLLI, E. ; PORTELA, Luis Valmor ; SOUZA, Diogo Onofre ; TORT, A. B. L. . Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. Experimental Neurology , v. 221, p. 296-306, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : The major objective of our study is to investigate DNA damage induced by soft X-rays (1.5 keV) and low-energy electrons (˂ 30 eV) using a novel irradiation system created by Prof. Sanche’s group. Thin films of double-stranded DNA are deposited on either glass and tantalum substrates and irradiated under standard temperature and pressure surrounded by a N[subscript 2] environment. Base release (cytosine, thymine, adenine and guanine) and base modifications (8-oxo-7,8-dihydro -2’-deoxyguanosine, 5-hydroxymethyl-2’-deoxyuridine, 5-formyl-2’-deoxyuridine, 5,6-dihydrothymidine and 5,6-dihydro-2’-deoxy uridine) are analyzed and quantified by LC-MS/MS. Our results reveal larger damage yields in the sample deposited on tantalum than those on glass. This can be explained by an enhancement of damage due to low-energy electrons, which are emitted from the metal substrate. From a comparison of the yield of products, base release is the major type of damage especially for purine bases, which are 3-fold greater than base modifications. A proposed pathway leading to base release involves the formation of a transient negative ion (TNI) followed by dissociative electron attachment (DEA) at the N-g lycosidic bond. On the other hand, base modification products consist of two major types of chemical modifications, which include thymine methyl oxidation products that likely arises from DEA from the methyl group of thymine, and 5,6-dihydropyrimidine that can involve the initial addition of electrons, H atoms, or hydride ions to the 5,6-pyrimidine double bond.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although anti−cancer immuno−based combinatorial therapeutic approaches have shown promising results, efficient tumour eradication demands further intensification of anti−tumour immune response. With the emerging field of nanovaccinology, multi−walled carbon nanotubes (MWNTs) have manifested prominent potentials as tumour antigen nanocarriers. Nevertheless, the utilization of MWNTs in co−delivering antigen along with different types of immunoadjuvants to antigen presenting cells (APCs) has not been investigated yet. We hypothesized that harnessing MWNT for concurrent delivery of cytosine−phosphate−guanine oligodeoxynucleotide (CpG) and anti-CD40 Ig (αCD40), as immunoadjuvants, along with the model antigen ovalbumin (OVA) could potentiate immune response induced against OVA−expressing tumour cells. We initially investigated the effective method to co−deliver OVA and CpG using MWNT to the APC. Covalent conjugation of OVA and CpG prior to loading onto MWNTs markedly augmented the CpG−mediated adjuvanticity, as demonstrated by the significantly increased OVA−specific T cell responses in vitro and in C57BL/6 mice. αCD40 was then included as a second immunoadjuvant to further intensify the immune response. Immune response elicited in vitro and in vivo by OVA, CpG and αCD40 was significantly potentiated by their co−incorporation onto the MWNTs. Furthermore, MWNT remarkably improved the ability of co−loaded OVA, CpG and αCD40 in inhibiting the growth of OVA−expressing B16F10 melanoma cells in subcutaneous or lung pseudo−metastatic tumour models. Therefore, this study suggests that the utilization of MWNTs for the co−delivery of tumour−derived antigen, CpG and αCD40 could be a competent approach for efficient tumours eradication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TORRES, F ; FILHO, M.S. ; ANTUNES, C. ; KALININE, E. ; ANTONIOLLI, E. ; PORTELA, Luis Valmor ; SOUZA, Diogo Onofre ; TORT, A. B. L. . Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. Experimental Neurology , v. 221, p. 296-306, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: It is well established that ionizing radiation induces a variety of damage in DNA by direct effects that are mediated by one-electron oxidation and indirect effects that are mediated by the reaction of water radiolysis products, e.g., hydroxyl radicals (•OH). In cellular DNA, direct and indirect effects appear to have about an equal effect toward DNA damage. We have shown that ϒ-(gamma) ray irradiation of aqueous solutions of DNA, during which •OH is the major damaging ROS can lead to the formation several lesions. On the other hand, the methylation and oxidative demethylation of cytosine in CpG dinucleotides plays a critical role in the gene regulation. The C5 position of cytosine in CG dinucleotides is frequently methylated by DNA methyl transferees (DNMTs) and constitutes 4-5% of the total cytosine. Here, my PhD research work focuses on the analysis of oxidative base modifications of model compounds of methylated and non methylated oligonucleotides, isolated DNA (calf-thymus DNA) and F98 cultured cell by gamma radiation. In addition, we identified a series of modifications of the 2-deoxyribose moiety of DNA arising from the exposure of isolated and cellular DNA to ionizing radiation. We also studied one electron oxidation of cellular DNA in cultured human HeLa cells initiated by intense nanosecond 266 nm laser pulse irradiation, which produces cross-links between guanine and thymine bases (G*-T*). To achieve these goals, we developed several methods based on mass spectrometry to analyze base modifications in isolated DNA and cellular DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugarcane has an importance in Brazil due to sugar and biofuel production. Considering this aspect, there is basic research being done in order to understand its physiology to improve production. The aim of this research is the Base Excision Repair pathway, in special the enzyme MUTM DNA-glycosylase (formamidopyrimidine) which recognizes oxidized guanine in DNA. The sugarcane scMUTM genes were analyzed using four BACs (Bacterial Artificial Chromosome) from a sugarcane genomic library from R570 cultivar. The resulted showed the presence in the region that had homology to scMUTM the presence of transposable elements. Comparing the similarity, it was observed a highest similarity to Sorghum bicolor sequence, both nucleotide and peptide sequences. Furthermore, promoter regions from MUTM genes in some grass showed different cis-regulatory elements, among which, most were related to oxidative stress, suggesting a gene regulation by oxidative stress

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorectal cancer (CRC) represents the third most common cancer type and the second leading cause of cancer-related death in the western world. CRC results from the accumulation of both acquired genetic and epigenetic changes that transform normal glandular epithelium into adenocarcinoma (Lao and Grady 2011), affecting several genes such as Apc, K-ras, dcc/Smad4 and p53 or DNA mismatch repair genes (Pancione et al. 2012). p38 MAPKs are a subfamily of Serine-Threonine kinases activated by different stimuli that control fundamental cellular processes such as cell growth, proliferation, differentiation, migration and apoptosis (Dhillon et al. 2007, Nebreda and Porras 2000, Wagner and Nebreda 2009). There are four p38 MAPKs isoforms in mammals: α, β, δ and γ. p38α MAPK is ubiquitously expressed and is the most abundant isoform (Cuenda and Rousseau 2007). p38α is involved in the regulation of many cellular functions, among them, cell migration and invasion. In cancer, it can act as either a promoter or a suppressor of tumor growth, playing different roles during tumor progression (del Barco Barrantes and Nebreda 2012). C3G is a guanine nucleotide exchange factor (GEF) mainly for the Ras family members: Rap1 (Gotoh et al. 1995) and R-Ras (Gotoh et al. 1997), but it can also act through GEF independent mechanisms. C3G regulates several cellular functions such as cell death, adhesion, migration and invasion (Radha et al. 2011). In collaboration with Dr. Carmen Guerrero’s group (Centro del Investigación del Cáncer de Salamanca), our group has found a new functional relationship between C3G and p38α MAPK involved in the regulation of cell death in MEFs (Gutierrez-Uzquiza et al. 2010) and in the chronic myeloid leukemia (CML) K562 cell line (Maia et al. 2009). Moreover, C3G and p38α act through a common regulatory pathway to control cell adhesion in K562 cells regulating focal adhesion proteins (Maia et al. 2013)...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poster presented at the From Basic Sciences to Clinical Research - First International Congress of CiiEM. Egas Moniz, Caparica, Portugal, 27-28 November 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene as a carbon monolayer has attracted extensive research interest in recent years. My research work within the frame of density functional theory has suggested that positioning graphene in proximity to h-BN may induce a finite energy gap in graphene, which is important for device applications. For an AB-stacked graphene/BN bilayer, a finite gap is induced at the equilibrium configuration. This induced gap shows a linear relationship with the applied strain. For a graphene/BN/graphene trilayer, a negligible gap is predicted in the ground state due to the overall symmetry of the system. When an electric field is applied, a tunable gap can be obtained for both AAA and ABA stackings. Enhanced tunneling current in the AA-stacked bilayer nanoribbons is predicted compared to either single-layer or AB-stacked bilayer nanoribbons. Interlayer separation between the nanoribbons is shown to have a profound impact on the conducting features. The effect of boron or nitrogen doping on the electronic transport properties of C60 fullerene is studied. The BC59 fullerene exhibits a considerably higher current than the pristine or nitrogen doped fullerenes beyond the applied bias of 1 V, suggesting it can be an effective semiconductor in p-type devices. The interaction between nucleic acid bases - adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U) - and a hydrogen-passivated silicon nanowire (SiNW) is investigated. The binding energy of the bases with the SiNW shows the order: G > A~C~T~U. This suggests that the interaction strength of a hydrogen passivated SiNW with the nucleic acid bases is nearly the same-G being an exception. The nature of the interaction is suggested to be electrostatic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. Steroid hormones, such as estrogen, and growth factors, which include insulin growth factor I/II (IGF-1/IGF-2) therapy has been associated with most if not all of the features of metastasis. It has been determined that IGF-1 increases cell survival of cancer cells and potentiate the effect of E2 and other ligand growth factors on breast cancer cells. However not much information is available that comprehensively expounds on the roles of insulin growth factor receptor (IGFR) and Rab GTPases may play in breast cancer. The latter, Rab GTPases, are small signaling molecules and critical in the regulation of many cellular processes including cell migration, growth via the endocytic pathway. This research involves the role of Rab GTPases, specifically Rab5 and its guanine exchange factors (GEFs), in the promotion of cancer cell migration and invasion. Two important questions abound: Are IGFR stimulation and downstream effect involved the endocytic pathway in carcinogenesis? What role does Rab5 play in cell migration and invasion of cancer cells? The hypothesis is that growth factor signaling is dependent on Rab5 activity in mediating the aggressiveness of cancer cells. The goal is to demonstrate that IGF-1 signaling is dependent on Rab5 function in breast cancer progression. Here, the results thus far, have shown that while activation of Rab5 may mediate increased cell proliferation, migration and invasion in breast cancer cells, the Rab5 GEF, RIN1 interacts with the IGFR thereby facilitating migration and invasion activities in breast cells. Furthermore, endocytosis of the IGFR in breast cancer cells seems to be caveolin dependent as the data has shown. This taken together, the data shows that IGF-1 signaling in breast cancer cells relies on IGF-1R phosphorylation, caveolae internalization and sequestration to the early endosome RIN1 function and Rab5 activation.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feed efficiency and carcass characteristics are late-measured traits. The detection of molecular markers associated with them can help breeding programs to select animals early in life, and to predict breeding values with high accuracy. The objective of this study was to identify polymorphisms in the functional and positional candidate gene NEUROD1 (neurogenic differentiation 1), and investigate their associations with production traits in reference families of Nelore cattle. A total of 585 steers were used, from 34 sires chosen to represent the variability of this breed. By sequencing 14 animals with extreme residual feed intake (RFI) values, seven single nucleotide polymorphisms (SNPs) in NEUROD1 were identified. The investigation of marker effects on the target traits RFI, backfat thickness (BFT), ribeye area (REA), average body weight (ABW), and metabolic body weight (MBW) was performed with a mixed model using the restricted maximum likelihood method. SNP1062, which changes cytosine for guanine, had no significant association with RFI or REA. However, we found an additive effect on ABW (P ≤ 0.05) and MBW (P ≤ 0.05), with an estimated allele substitution effect of -1.59 and -0.93 kg0.75, respectively. A dominant effect of this SNP for BFT was also found (P ≤ 0.010). Our results are the first that identify NEUROD1 as a candidate that affects BFT, ABW, and MBW. Once confirmed, the inclusion of this SNP in dense panels may improve the accuracy of genomic selection for these traits in Nelore beef cattle as this SNP is not currently represented on SNP chips.