844 resultados para geographical location
Resumo:
Housepits have a remarkably short research history as compared to Fennoscandian archaeological research on the Stone Age in general. The current understanding of the numbers and the distribution of Stone Age housepits in the Nordic countries has, for the most part, been shaped by archaeological studies carried out over the last twenty to thirty years. The main subjects of this research are Neolithic housepits, which are archaeological remains of semi-subterranean pithouses. This dissertation consists of five peer-reviewed articles and a synthesis paper. The articles deal with the development of housepits as seen in the data gathered from Finland (the Lake Saimaa area and south-eastern Finland) and Russia (the Karelian Isthmus). This synthesis expands the discussion of the changes observed in the Papers to include Fennoscandian housepit research as a whole. Certain changes in the size, shape, environmental location, and clustering of housepits extended into various cultures and ecological zones in northern Fennoscandia. Previously, the evolution of housepits has been interpreted to have been caused by the adaptation of Neolithic societies to prevailing environmental circumstances or to re-organization following contacts with the agrarian Corded Ware/Battle Axe Cultures spreading to North. This dissertation argues for two waves of change in the pithouse building tradition. Both waves brought with them certain changes in the pithouses themselves and in the practices of locating the dwellings in the environment/landscape. The changes in housepits do not go hand in hand with other changes in material culture, nor are the changes restricted to certain ecological environments. Based on current information, it appears that the changes relate primarily to the spread of new concepts of housing and possibly to new technology, as opposed to representing merely a local response to environmental factors. This development commenced already before the birth of the Corded Ware/Battle Axe Cultures. Therefore, the changes are argued to have resulted from the spreading of new ideas through the same networks that actively distributed commodities, exotic goods, and raw materials over vast areas between the southern Baltic Sea, the north-west Russian forest zone, and Fennoscandia.
Resumo:
The Madelung energy of YBa2Cu4O8 has been computed for different locations of the hole in the structure. The lowest-energy configuration corresponds to partial localization of the hole on O(1) and O(11) sites.
Resumo:
A local algorithm with local horizon r is a distributed algorithm that runs in r synchronous communication rounds; here r is a constant that does not depend on the size of the network. As a consequence, the output of a node in a local algorithm only depends on the input within r hops from the node. We give tight bounds on the local horizon for a class of local algorithms for combinatorial problems on unit-disk graphs (UDGs). Most of our bounds are due to a refined analysis of existing approaches, while others are obtained by suggesting new algorithms. The algorithms we consider are based on network decompositions guided by a rectangular tiling of the plane. The algorithms are applied to matching, independent set, graph colouring, vertex cover, and dominating set. We also study local algorithms on quasi-UDGs, which are a popular generalisation of UDGs, aimed at more realistic modelling of communication between the network nodes. Analysing the local algorithms on quasi-UDGs allows one to assume that the nodes know their coordinates only approximately, up to an additive error. Despite the localisation error, the quality of the solution to problems on quasi-UDGs remains the same as for the case of UDGs with perfect location awareness. We analyse the increase in the local horizon that comes along with moving from UDGs to quasi-UDGs.
Resumo:
Lamb-wave-based damage detection methods using the triangulation technique are not suitable for handling structures with complex shapes and discontinuities as the parametric/analytical representation of these structures is very difficult. The geodesic concept is used along with the triangulation technique to overcome the above problem. The present work is based on the fundamental fact that a wave takes the minimum energy path to travel between two points on any multiply connected surface and this reduces to the shortest distance path or geodesic. The geodesics are computed on the meshed surface of the structure using the fast marching method. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrices are compared and their difference gives the time information about the reflection of waves from the damage. A wavelet transform is used to extract the arrival time information of the wave scattered by the damage from the acquired Lamb wave signals. The computed geodesics and time information are used in the ellipse algorithm of triangulation formulation to locate the loci of possible damage location points for each actuator-sensor pair. The results obtained for all actuator-sensor pairs are combined and the intersection of multiple loci gives the damage location result. Experiments were conducted in aluminum and composite plate specimens to validate this method.
Resumo:
Thunderstorm is a dangerous electrical phenomena in the atmosphere. Thundercloud is formed when thermal energy is transported rapidly upwards in convective updraughts. Electrification occurs in the collisions of cloud particles in the strong updraught. When the amount of charge in the cloud is large enough, electrical breakdown, better known as a flash, occurs. Lightning location is nowadays an essential tool for the detection of severe weather. Located flashes indicate in real time the movement of hazardous areas and the intensity of lightning activity. Also, an estimate for the flash peak current can be determined. The observations can be used in damage surveys. The most simple way to represent lightning data is to plot the locations on a map, but the data can be processed in more complex end-products and exploited in data fusion. Lightning data serves as an important tool also in the research of lightning-related phenomena, such as Transient Luminous Events. Most of the global thunderstorms occur in areas with plenty of heat, moisture and tropospheric instability, for example in the tropical land areas. In higher latitudes like in Finland, the thunderstorm season is practically restricted to the summer season. Particular feature of the high-latitude climatology is the large annual variation, which regards also thunderstorms. Knowing the performance of any measuring device is important because it affects the accuracy of the end-products. In lightning location systems, the detection efficiency means the ratio between located and actually occurred flashes. Because in practice it is impossible to know the true number of actually occurred flashes, the detection efficiency has to be esimated with theoretical methods.
Resumo:
The radiative impact of aerosols is one of the largest sources of uncertainty in estimating anthropogenic climate perturbations. Here we have used independent ground-based radiometer measurements made simultaneously with comprehensive measurements of aerosol microphysical and optical properties at a highly populated urban site, Bangalore (13.02 degrees N, 77.6 degrees E) in southern India during a dedicated campaign during winter of 2004 and summer and pre-monsoon season of 2005. We have also used longer term measurements carried out at this site to present general features of aerosols over this region. The aerosol radiative impact assessments were made from direct measurements of ground reaching irradiance as well as by incorporating measured aerosol properties into a radiative transfer model. Large discrepancies were observed between measured and modeled (using radiative transfer models, which employed measured aerosol properties) radiative impacts. It appears that the presence of elevated aerosol layers and (or) inappropriate description of aerosol state of mixing are (is) responsible for the discrepancies. On a monthly scale reduction of surface irradiance due to the presence of aerosols (estimated using radiative flux measurements) varies from 30 to 65 W m(-2). The lowest values in surface radiative impact were observed during June when there is large reduction in aerosol as a consequence of monsoon rainfall. Large increase in aerosol-induced surface radiative impact was observed from winter to summer. Our investigations re-iterate the inadequacy of aerosol measurements at the surface alone and importance of representing column properties (using vertical profiles) accurately in order to assess aerosol-induced climate changes accurately. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A series of isomeric cationic surfactants (S1-S5) bearing a long alkyl chain that carries a 1,4-phenylene unit and a trimethyl ammonium headgroup was synthesized; the location of the phenyl ring within the alkyl tail was varied in an effort to understand its influence on the amphiphilic properties of the surfactants. The cmc's of the surfactants were estimated using ionic conductivity measurements and isothermal calorimetric titrations (ITC); the values obtained by the two methods were found to be in excellent agreement. The ITC measurements provided additional insight into the various thermodynamic parameters associated with the micellization process. Although all five surfactants have exactly the same molecular formula, their micellar properties were seen to vary dramatically depending on the location of the phenyl ring; the cmc was seen to decrease by almost an order of magnitude when the phenyl ring was moved from the tail end (cmc of S1 is 23 mM) to the headgroup region (cmc of S5 is 3 mM). In all cases, the enthalpy of micellization was negative but the entropy of micellization was positive, suggesting that in all of these systems the formation of micelles is both enthalpically and entropically favored. As expected, the decrease in cmc values upon moving the phenyl ring from the tail end to he headgroup region is accompanied by an increase in the thermodynamic driving force (Delta G) for micellization. To understand further the differences in the micellar structure of these surfactants, small-angle neutron scattering (SANS) measurements were carried out; these measurements reveal that the aggregation number of the micelles increases as the cmc decreases. This increase in the aggregation number is also accompanied by an increase in the asphericity of the micellar aggregate and a decrease in the fractional charge. Geometric packing arguments are presented to account for these changes in aggregation behavior as a function of phenyl ring location.
Resumo:
The Western Ghats of India are very rich in amphibian species with 117 species of frogs, toads and caecilians. Eighty-nine species are endemic to this biogeographical region. Analysis of ranges and patterns of geographical distribution of amphibians on the Western Ghats suggest that the southern half of the Western Ghats and the low-medium elevation hills are more diverse in species than the northern half and higher hills. This is attributed to the more widespread rainfall and the less variable climatic conditions in the south. About half the species are apparently localized. Of those species with wider ranges, a majority show patchy distribution. Species preferring the moist evergreen forests as habitats tend to have patchy distributions. This appears to be a result of habitat destruction and fragmentation. The overall patterns of species richness and local endemism are rather different from those of the angiosperms and birds. In birds and angiosperms, a significant proportion of endemics are found on the higher hills. On the contrary, endemic amphibian species are found in the lower altitudinal range of 0-1000 m, with a majority between 800 and 1000 m.
Resumo:
We consider a wireless sensor network whose main function is to detect certain infrequent alarm events, and to forward alarm packets to a base station, using geographical forwarding. The nodes know their locations, and they sleep-wake cycle, waking up periodically but not synchronously. In this situation, when a node has a packet to forward to the sink, there is a trade-off between how long this node waits for a suitable neighbor to wake up and the progress the packet makes towards the sink once it is forwarded to this neighbor. Hence, in choosing a relay node, we consider the problem of minimizing average delay subject to a constraint on the average progress. By constraint relaxation, we formulate this next hop relay selection problem as a Markov decision process (MDP). The exact optimal solution (BF (Best Forward)) can be found, but is computationally intensive. Next, we consider a mathematically simplified model for which the optimal policy (SF (Simplified Forward)) turns out to be a simple one-step-look-ahead rule. Simulations show that SF is very close in performance to BF, even for reasonably small node density. We then study the end-to-end performance of SF in comparison with two extremal policies: Max Forward (MF) and First Forward (FF), and an end-to-end delay minimising policy proposed by Kim et al. 1]. We find that, with appropriate choice of one hop average progress constraint, SF can be tuned to provide a favorable trade-off between end-to-end packet delay and the number of hops in the forwarding path.
Resumo:
The principle of the conservation of bond orders during radical-exchange reactions is examined using Mayer's definition of bond orders. This simple intuitive approximation is not valid in a quantitative sense. Ab initio results reveal that free valences (or spin densities) develop on the migrating atom during reactions. For several examples of hydrogen-transfer reactions, the sum of the reaction coordinate bond orders in the transition state was found to be 0.92 +/- 0.04 instead of the theoretical 1.00 because free valences (or spin densities) develop on the migrating atom during reactions. It is shown that free valence is almost equal to the square of the spin density on the migrating hydrogen atom and the maxima in the free valence (or spin density) profiles coincide (or nearly coincide) with the saddle points in the corresponding energy profiles.
Resumo:
The authors present the simulation of the tropical Pacific surface wind variability by a low-resolution (R15 horizontal resolution and 18 vertical levels) version of the Center for Ocean-Land-Atmosphere Interactions, Maryland, general circulation model (GCM) when forced by observed global sea surface temperature. The authors have examined the monthly mean surface winds acid precipitation simulated by the model that was integrated from January 1979 to March 1992. Analyses of the climatological annual cycle and interannual variability over the Pacific are presented. The annual means of the simulated zonal and meridional winds agree well with observations. The only appreciable difference is in the region of strong trade winds where the simulated zonal winds are about 15%-20% weaker than observed, The amplitude of the annual harmonics are weaker than observed over the intertropical convergence zone and the South Pacific convergence zone regions. The amplitudes of the interannual variation of the simulated zonal and meridional winds are close to those of the observed variation. The first few dominant empirical orthogonal functions (EOF) of the simulated, as well as the observed, monthly mean winds are found to contain a targe amount of high-frequency intraseasonal variations, While the statistical properties of the high-frequency modes, such as their amplitude and geographical locations, agree with observations, their detailed time evolution does not. When the data are subjected to a 5-month running-mean filter, the first two dominant EOFs of the simulated winds representing the low-frequency EI Nino-Southern Oscillation fluctuations compare quite well with observations. However, the location of the center of the westerly anomalies associated with the warm episodes is simulated about 15 degrees west of the observed locations. The model simulates well the progress of the westerly anomalies toward the eastern Pacific during the evolution of a warm event. The simulated equatorial wind anomalies are comparable in magnitude to the observed anomalies. An intercomparison of the simulation of the interannual variability by a few other GCMs with comparable resolution is also presented. The success in simulation of the large-scale low-frequency part of the tropical surface winds by the atmospheric GCM seems to be related to the model's ability to simulate the large-scale low-frequency part of the precipitation. Good correspondence between the simulated precipitation and the highly reflective cloud anomalies is seen in the first two EOFs of the 5-month running means. Moreover, the strong correlation found between the simulated precipitation and the simulated winds in the first two principal components indicates the primary role of model precipitation in driving the surface winds. The surface winds simulated by a linear model forced by the GCM-simulated precipitation show good resemblance to the GCM-simulated winds in the equatorial region. This result supports the recent findings that the large-scale part of the tropical surface winds is primarily linear.
Resumo:
Multi-year (similar to 7 years) observations of aerosol optical and microphysical properties were conducted at a tropical urban location in Bangalore, India. As a consequence of rapid urbanization, Bangalore presents high local atmospheric emissions, which makes it an interesting site to study the effect of anthropogenic activities on aerosol properties. It has been found that both column (aerosol optical depth, AOD) and ground-level measurements (black carbon (BC) and composite aerosol mass) exhibit a weekly cycle with low aerosol concentrations on weekends. In comparison to the weekdays, the weekend reductions of aerosol optical depth, black carbon and composite aerosol mass concentrations were similar to 15%, 25% and 24%, respectively. The magnitude of weekend reduction of black carbon is as much as similar to 1 mu g m(-3). The similarity in the weekly cycle between the column and surface measurements suggests that the aerosol column loading at this location is governed by local anthropogenic emissions. The strongest weekly cycle in composite aerosol mass concentration was observed in the super micron mass range (>1 mu m). The weekly cycle of composite aerosol mass in the sub micron mass range (<1 mu m) was weak in comparison to the super micron aerosol mass. (C) 2011 Elsevier B.V. All rights reserved.