776 resultados para geographical information systems (GIS)
Resumo:
The need to effectively manage the documentation covering the entire production process, from the concept phase right through to market realise, constitutes a key issue in the creation of a successful and highly competitive product. For almost forty years the most commonly used strategies to achieve this have followed Product Lifecycle Management (PLM) guidelines. Translated into information management systems at the end of the '90s, this methodology is now widely used by companies operating all over the world in many different sectors. PLM systems and editor programs are the two principal types of software applications used by companies for their process aotomation. Editor programs allow to store in documents the information related to the production chain, while the PLM system stores and shares this information so that it can be used within the company and made it available to partners. Different software tools, which capture and store documents and information automatically in the PLM system, have been developed in recent years. One of them is the ''DirectPLM'' application, which has been developed by the Italian company ''Focus PLM''. It is designed to ensure interoperability between many editors and the Aras Innovator PLM system. In this dissertation we present ''DirectPLM2'', a new version of the previous software application DirectPLM. It has been designed and developed as prototype during the internship by Focus PLM. Its new implementation separates the abstract logic of business from the real commands implementation, previously strongly dependent on Aras Innovator. Thanks to its new design, Focus PLM can easily develop different versions of DirectPLM2, each one devised for a specific PLM system. In fact, the company can focus the development effort only on a specific set of software components which provides specialized functions interacting with that particular PLM system. This allows shorter Time-To-Market and gives the company a significant competitive advantage.
Resumo:
The spectacular advances computer science applied to geographic information systems (GIS) in recent times has favored the emergence of several technological solutions. These developments have given rise to enormous opportunities for digital management of the territory. Among the technological solutions, the most famous Google Maps offers free online mapping dynamic exhaustive of the Maps. In addition to meet the enormous needs of urban indicators geotagged information, we did work on this project “Integration of an urban observatory on Google Maps.” The problem of geolocation in the urban observatory is particularly relevant in the sense that there is currently no data (descriptive and geographical) reliable on the urban sector; we must stick to extrapolate from data old and obsolete. This helps to curb the effectiveness of urban management to make difficult investment programming and to prevent the acquisition of knowledge to make cities engines of growth. The use of a geolocation tool coupled to the data would allow better monitoring of indicators Our project's objective is to develop an interactive map server (WebMapping) which map layer is formed from the resources of the Google Maps servers and match information from the field to produce maps of urban equipment and infrastructure of a city data to the client's request To achieve this goal, we will participate in a study of a GPS location of strategic sites in our core sector (health facilities), on the other hand, using information from the field, we will build a postgresql database that will link the information from the field to map from Google Maps via KML scripts and PHP appropriate. We will limit ourselves in our work to the city of Douala Cameroon with the sectors of health facilities with the possibility of extension to other areas and other cities. Keywords: Geographic Information System (GIS), Thematic Mapping, Web Mapping, data mining, Google API.
Resumo:
Quantifying belowground dynamics is critical to our understanding of plant and ecosystem function and belowground carbon cycling, yet currently available tools for complex belowground image analyses are insufficient. We introduce novel techniques combining digital image processing tools and geographic information systems (GIS) analysis to permit semi-automated analysis of complex root and soil dynamics. We illustrate methodologies with imagery from microcosms, minirhizotrons, and a rhizotron, in upland and peatland soils. We provide guidelines for correct image capture, a method that automatically stitches together numerous minirhizotron images into one seamless image, and image analysis using image segmentation and classification in SPRING or change analysis in ArcMap. These methods facilitate spatial and temporal root and soil interaction studies, providing a framework to expand a more comprehensive understanding of belowground dynamics.
Resumo:
he notion of outsourcing – making arrangements with an external entity for the provision of goods or services to supplement or replace internal efforts – has been around for centuries. The outsourcing of information systems (IS) is however a much newer concept but one which has been growing dramatically. This book attempts to synthesize what is known about IS outsourcing by dividing the subject into three interrelated parts: (1) Traditional Information Technology Outsourcing, (2) Information Technolgy Offshoring, and (3) Business Process Outsourcing. The book should be of interest to all academics and students in the field of Information Systems as well as corporate executives and professionals who seek a more profound analysis and understanding of the underlying factors and mechanisms of outsourcing.
Resumo:
The practice of information systems (IS) outsourcing is widely established among organizations. Nonetheless, evidence suggests that organizations differ considerably in the extent to which they deploy IS outsourcing. This variation has motivated research into the determinants of the IS outsourcing decision. Most of this research is based on the assumption that a decision on the outsourcing of a particular IS function is made independently of other IS functions. This modular view ignores the systemic nature of the IS function, which posits that IS effectiveness depends on how the various IS functions work together effectively. This study proposes that systemic influences are important criteria in evaluating the outsourcing option. It further proposes that the recognition of systemic influences in outsourcing decisions is culturally sensitive. Specifically, we provide evidence that systemic effects are factored into the IS outsourcing decision differently in more individualist cultures than in collectivist ones. Our results of a survey of United States and German firms indicate that perceived in-house advantages in the systemic impact of an IS function are, indeed, a significant determinant of IS outsourcing in a moderately individualist country (i.e., Germany), whereas insignificant in a strongly individualist country (i.e., the United States). The country differences are even stronger with regard to perceived in-house advantages in the systemic view of IS professionals. In fact, the direction of this impact is reversed in the United States sample. Other IS outsourcing determinants that were included as controls, such as cost efficiency, did not show significant country differences.
Resumo:
Currently more than half of Electronic Health Record (EHR) projects fail. Most of these failures are not due to flawed technology, but rather due to the lack of systematic considerations of human issues. Among the barriers for EHR adoption, function mismatching among users, activities, and systems is a major area that has not been systematically addressed from a human-centered perspective. A theoretical framework called Functional Framework was developed for identifying and reducing functional discrepancies among users, activities, and systems. The Functional Framework is composed of three models – the User Model, the Designer Model, and the Activity Model. The User Model was developed by conducting a survey (N = 32) that identified the functions needed and desired from the user’s perspective. The Designer Model was developed by conducting a systemic review of an Electronic Dental Record (EDR) and its functions. The Activity Model was developed using an ethnographic method called shadowing where EDR users (5 dentists, 5 dental assistants, 5 administrative personnel) were followed quietly and observed for their activities. These three models were combined to form a unified model. From the unified model the work domain ontology was developed by asking users to rate the functions (a total of 190 functions) in the unified model along the dimensions of frequency and criticality in a survey. The functional discrepancies, as indicated by the regions of the Venn diagrams formed by the three models, were consistent with the survey results, especially with user satisfaction. The survey for the Functional Framework indicated the preference of one system over the other (R=0.895). The results of this project showed that the Functional Framework provides a systematic method for identifying, evaluating, and reducing functional discrepancies among users, systems, and activities. Limitations and generalizability of the Functional Framework were discussed.
Resumo:
BACKGROUND: The most effective decision support systems are integrated with clinical information systems, such as inpatient and outpatient electronic health records (EHRs) and computerized provider order entry (CPOE) systems. Purpose The goal of this project was to describe and quantify the results of a study of decision support capabilities in Certification Commission for Health Information Technology (CCHIT) certified electronic health record systems. METHODS: The authors conducted a series of interviews with representatives of nine commercially available clinical information systems, evaluating their capabilities against 42 different clinical decision support features. RESULTS: Six of the nine reviewed systems offered all the applicable event-driven, action-oriented, real-time clinical decision support triggers required for initiating clinical decision support interventions. Five of the nine systems could access all the patient-specific data items identified as necessary. Six of the nine systems supported all the intervention types identified as necessary to allow clinical information systems to tailor their interventions based on the severity of the clinical situation and the user's workflow. Only one system supported all the offered choices identified as key to allowing physicians to take action directly from within the alert. Discussion The principal finding relates to system-by-system variability. The best system in our analysis had only a single missing feature (from 42 total) while the worst had eighteen.This dramatic variability in CDS capability among commercially available systems was unexpected and is a cause for concern. CONCLUSIONS: These findings have implications for four distinct constituencies: purchasers of clinical information systems, developers of clinical decision support, vendors of clinical information systems and certification bodies.