969 resultados para genetic models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigators interested in whether a disease aggregates in families often collect case-control family data, which consist of disease status and covariate information for families selected via case or control probands. Here, we focus on the use of case-control family data to investigate the relative contributions to the disease of additive genetic effects (A), shared family environment (C), and unique environment (E). To this end, we describe a ACE model for binary family data and then introduce an approach to fitting the model to case-control family data. The structural equation model, which has been described previously, combines a general-family extension of the classic ACE twin model with a (possibly covariate-specific) liability-threshold model for binary outcomes. Our likelihood-based approach to fitting involves conditioning on the proband’s disease status, as well as setting prevalence equal to a pre-specified value that can be estimated from the data themselves if necessary. Simulation experiments suggest that our approach to fitting yields approximately unbiased estimates of the A, C, and E variance components, provided that certain commonly-made assumptions hold. These assumptions include: the usual assumptions for the classic ACE and liability-threshold models; assumptions about shared family environment for relative pairs; and assumptions about the case-control family sampling, including single ascertainment. When our approach is used to fit the ACE model to Austrian case-control family data on depression, the resulting estimate of heritability is very similar to those from previous analyses of twin data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An appropriate model of recent human evolution is not only important to understand our own history, but it is necessary to disentangle the effects of demography and selection on genome diversity. Although most genetic data support the view that our species originated recently in Africa, it is still unclear if it completely replaced former members of the Homo genus, or if some interbreeding occurred during its range expansion. Several scenarios of modern human evolution have been proposed on the basis of molecular and paleontological data, but their likelihood has never been statistically assessed. Using DNA data from 50 nuclear loci sequenced in African, Asian and Native American samples, we show here by extensive simulations that a simple African replacement model with exponential growth has a higher probability (78%) as compared with alternative multiregional evolution or assimilation scenarios. A Bayesian analysis of the data under this best supported model points to an origin of our species approximately 141 thousand years ago (Kya), an exit out-of-Africa approximately 51 Kya, and a recent colonization of the Americas approximately 10.5 Kya. We also find that the African replacement model explains not only the shallow ancestry of mtDNA or Y-chromosomes but also the occurrence of deep lineages at some autosomal loci, which has been formerly interpreted as a sign of interbreeding with Homo erectus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation has three separate parts: the first part deals with the general pedigree association testing incorporating continuous covariates; the second part deals with the association tests under population stratification using the conditional likelihood tests; the third part deals with the genome-wide association studies based on the real rheumatoid arthritis (RA) disease data sets from Genetic Analysis Workshop 16 (GAW16) problem 1. Many statistical tests are developed to test the linkage and association using either case-control status or phenotype covariates for family data structure, separately. Those univariate analyses might not use all the information coming from the family members in practical studies. On the other hand, the human complex disease do not have a clear inheritance pattern, there might exist the gene interactions or act independently. In part I, the new proposed approach MPDT is focused on how to use both the case control information as well as the phenotype covariates. This approach can be applied to detect multiple marker effects. Based on the two existing popular statistics in family studies for case-control and quantitative traits respectively, the new approach could be used in the simple family structure data set as well as general pedigree structure. The combined statistics are calculated using the two statistics; A permutation procedure is applied for assessing the p-value with adjustment from the Bonferroni for the multiple markers. We use simulation studies to evaluate the type I error rates and the powers of the proposed approach. Our results show that the combined test using both case-control information and phenotype covariates not only has the correct type I error rates but also is more powerful than the other existing methods. For multiple marker interactions, our proposed method is also very powerful. Selective genotyping is an economical strategy in detecting and mapping quantitative trait loci in the genetic dissection of complex disease. When the samples arise from different ethnic groups or an admixture population, all the existing selective genotyping methods may result in spurious association due to different ancestry distributions. The problem can be more serious when the sample size is large, a general requirement to obtain sufficient power to detect modest genetic effects for most complex traits. In part II, I describe a useful strategy in selective genotyping while population stratification is present. Our procedure used a principal component based approach to eliminate any effect of population stratification. The paper evaluates the performance of our procedure using both simulated data from an early study data sets and also the HapMap data sets in a variety of population admixture models generated from empirical data. There are one binary trait and two continuous traits in the rheumatoid arthritis dataset of Problem 1 in the Genetic Analysis Workshop 16 (GAW16): RA status, AntiCCP and IgM. To allow multiple traits, we suggest a set of SNP-level F statistics by the concept of multiple-correlation to measure the genetic association between multiple trait values and SNP-specific genotypic scores and obtain their null distributions. Hereby, we perform 6 genome-wide association analyses using the novel one- and two-stage approaches which are based on single, double and triple traits. Incorporating all these 6 analyses, we successfully validate the SNPs which have been identified to be responsible for rheumatoid arthritis in the literature and detect more disease susceptibility SNPs for follow-up studies in the future. Except for chromosome 13 and 18, each of the others is found to harbour susceptible genetic regions for rheumatoid arthritis or related diseases, i.e., lupus erythematosus. This topic is discussed in part III.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently divergent species that can hybridize are ideal models for investigating the genetic exchanges that can occur while preserving the species boundaries. Petunia exserta is an endemic species from a very limited and specific area that grows exclusively in rocky shelters. These shaded spots are an inhospitable habitat for all other Petunia species, including the closely related and widely distributed species P. axillaris. Individuals with intermediate morphologic characteristics have been found near the rocky shelters and were believed to be putative hybrids between P. exserta and P. axillaris, suggesting a situation where Petunia exserta is losing its genetic identity. In the current study, we analyzed the plastid intergenic spacers trnS/trnG and trnH/psbA and six nuclear CAPS markers in a large sampling design of both species to understand the evolutionary process occurring in this biological system. Bayesian clustering methods, cpDNA haplotype networks, genetic diversity statistics, and coalescence-based analyses support a scenario where hybridization occurs while two genetic clusters corresponding to two species are maintained. Our results reinforce the importance of coupling differentially inherited markers with an extensive geographic sample to assess the evolutionary dynamics of recently diverged species that can hybridize. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The success of combination antiretroviral therapy is limited by the evolutionary escape dynamics of HIV-1. We used Isotonic Conjunctive Bayesian Networks (I-CBNs), a class of probabilistic graphical models, to describe this process. We employed partial order constraints among viral resistance mutations, which give rise to a limited set of mutational pathways, and we modeled phenotypic drug resistance as monotonically increasing along any escape pathway. Using this model, the individualized genetic barrier (IGB) to each drug is derived as the probability of the virus not acquiring additional mutations that confer resistance. Drug-specific IGBs were combined to obtain the IGB to an entire regimen, which quantifies the virus' genetic potential for developing drug resistance under combination therapy. The IGB was tested as a predictor of therapeutic outcome using between 2,185 and 2,631 treatment change episodes of subtype B infected patients from the Swiss HIV Cohort Study Database, a large observational cohort. Using logistic regression, significant univariate predictors included most of the 18 drugs and single-drug IGBs, the IGB to the entire regimen, the expert rules-based genotypic susceptibility score (GSS), several individual mutations, and the peak viral load before treatment change. In the multivariate analysis, the only genotype-derived variables that remained significantly associated with virological success were GSS and, with 10-fold stronger association, IGB to regimen. When predicting suppression of viral load below 400 cps/ml, IGB outperformed GSS and also improved GSS-containing predictors significantly, but the difference was not significant for suppression below 50 cps/ml. Thus, the IGB to regimen is a novel data-derived predictor of treatment outcome that has potential to improve the interpretation of genotypic drug resistance tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies indicate that polymorphic genetic markers are potentially helpful in resolving genealogical relationships among individuals in a natural population. Genetic data provide opportunities for paternity exclusion when genotypic incompatibilities are observed among individuals, and the present investigation examines the resolving power of genetic markers in unambiguous positive determination of paternity. Under the assumption that the mother for each offspring in a population is unambiguously known, an analytical expression for the fraction of males excluded from paternity is derived for the case where males and females may be derived from two different gene pools. This theoretical formulation can also be used to predict the fraction of births for each of which all but one male can be excluded from paternity. We show that even when the average probability of exclusion approaches unity, a substantial fraction of births yield equivocal mother-father-offspring determinations. The number of loci needed to increase the frequency of unambiguous determinations to a high level is beyond the scope of current electrophoretic studies in most species. Applications of this theory to electrophoretic data on Chamaelirium luteum (L.) shows that in 2255 offspring derived from 273 males and 70 females, only 57 triplets could be unequivocally determined with eight polymorphic protein loci, even though the average combined exclusionary power of these loci was 73%. The distribution of potentially compatible male parents, based on multilocus genotypes, was reasonably well predicted from the allele frequency data available for these loci. We demonstrate that genetic paternity analysis in natural populations cannot be reliably based on exclusionary principles alone. In order to measure the reproductive contributions of individuals in natural populations, more elaborate likelihood principles must be deployed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extremes of electrocardiographic QT interval are associated with increased risk for sudden cardiac death (SCD); thus, identification and characterization of genetic variants that modulate QT interval may elucidate the underlying etiology of SCD. Previous studies have revealed an association between a common genetic variant in NOS1AP and QT interval in populations of European ancestry, but this finding has not been extended to other ethnic populations. We sought to characterize the effects of NOS1AP genetic variants on QT interval in the multi-ethnic population-based Dallas Heart Study (DHS, n = 3,072). The SNP most strongly associated with QT interval in previous samples of European ancestry, rs16847548, was the most strongly associated in White (P = 0.005) and Black (P = 3.6 x 10(-5)) participants, with the same direction of effect in Hispanics (P = 0.17), and further showed a significant SNP x sex-interaction (P = 0.03). A second SNP, rs16856785, uncorrelated with rs16847548, was also associated with QT interval in Blacks (P = 0.01), with qualitatively similar results in Whites and Hispanics. In a previously genotyped cohort of 14,107 White individuals drawn from the combined Atherosclerotic Risk in Communities (ARIC) and Cardiovascular Health Study (CHS) cohorts, we validated both the second locus at rs16856785 (P = 7.63 x 10(-8)), as well as the sex-interaction with rs16847548 (P = 8.68 x 10(-6)). These data extend the association of genetic variants in NOS1AP with QT interval to a Black population, with similar trends, though not statistically significant at P<0.05, in Hispanics. In addition, we identify a strong sex-interaction and the presence of a second independent site within NOS1AP associated with the QT interval. These results highlight the consistent and complex role of NOS1AP genetic variants in modulating QT interval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent attempts to detect mutations involving single base changes or small deletions that are specific to genetic diseases provide an opportunity to develop a two-tier mutation-screening program through which incidence of rare genetic disorders and gene carriers may be precisely estimated. A two-tier survey consists of mutation screening in a sample of patients with specific genetic disorders and in a second sample of newborns from the same population in which mutation frequency is evaluated. We provide the statistical basis for evaluating the incidence of affected and gene carriers in such two-tier mutation-screening surveys, from which the precision of the estimates is derived. Sample-size requirements of such two-tier mutation-screening surveys are evaluated. Considering examples of cystic fibrosis (CF) and medium-chain acyl-CoA dehydrogenase deficiency (MCAD), the two most frequent autosomal recessive disease in Caucasian populations and the two most frequent mutations (delta F508 and G985) that occur on these disease allele-bearing chromosomes, we show that, with 50-100 patients and a 20-fold larger sample of newborns screened for these mutations, the incidence of such diseases and their gene carriers in a population may be quite reliably estimated. The theory developed here is also applicable to rare autosomal dominant diseases for which disease-specific mutations are found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individuals with Lynch syndrome are predisposed to cancer due to an inherited DNA mismatch repair gene mutation. However, there is significant variability observed in disease expression likely due to the influence of other environmental, lifestyle, or genetic factors. Polymorphisms in genes encoding xenobiotic-metabolizing enzymes may modify cancer risk by influencing the metabolism and clearance of potential carcinogens from the body. In this retrospective analysis, we examined key candidate gene polymorphisms in CYP1A1, EPHX1, GSTT1, GSTM1, and GSTP1 as modifiers of age at onset of colorectal cancer among 257 individuals with Lynch syndrome. We found that subjects heterozygous for CYP1A1 I462V (c.1384A>G) developed colorectal cancer 4 years earlier than those with the homozygous wild-type genotype (median ages, 39 and 43 years, respectively; log-rank test P = 0.018). Furthermore, being heterozygous for the CYP1A1 polymorphisms, I462V and Msp1 (g.6235T>C), was associated with an increased risk for developing colorectal cancer [adjusted hazard ratio for AG relative to AA, 1.78; 95% confidence interval, 1.16-2.74; P = 0.008; hazard ratio for TC relative to TT, 1.53; 95% confidence interval, 1.06-2.22; P = 0.02]. Because homozygous variants for both CYP1A1 polymorphisms were rare, risk estimates were imprecise. None of the other gene polymorphisms examined were associated with an earlier onset age for colorectal cancer. Our results suggest that the I462V and Msp1 polymorphisms in CYP1A1 may be an additional susceptibility factor for disease expression in Lynch syndrome because they modify the age of colorectal cancer onset by up to 4 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The present study defines genomic loci underlying coordinate changes in gene expression following retinal injury. METHODS: A group of acute phase genes expressed in diverse nervous system tissues was defined by combining microarray results from injury studies from rat retina, brain, and spinal cord. Genomic loci regulating the brain expression of acute phase genes were identified using a panel of BXD recombinant inbred (RI) mouse strains. Candidate upstream regulators within a locus were defined using single nucleotide polymorphism databases and promoter motif databases. RESULTS: The acute phase response of rat retina, brain, and spinal cord was dominated by transcription factors. Three genomic loci control transcript expression of acute phase genes in brains of BXD RI mouse strains. One locus was identified on chromosome 12 and was highly correlated with the expression of classic acute phase genes. Within the locus we identified the inhibitor of DNA binding 2 (Id2) as a candidate upstream regulator. Id2 was upregulated as an acute phase transcript in injury models of rat retina, brain, and spinal cord. CONCLUSIONS: We defined a group of transcriptional changes associated with the retinal acute injury response. Using genetic linkage analysis of natural transcript variation, we identified regulatory loci and candidate regulators that control transcript levels of acute phase genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of tumorigenesis in the immortalized human pancreatic cell lines: cell culture models of human pancreatic cancer Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in the world. The most common genetic lesions identified in PDAC include activation of K-ras (90%) and Her2 (70%), loss of p16 (95%) and p14 (40%), inactivation p53 (50-75%) and Smad4 (55%). However, the role of these signature gene alterations in PDAC is still not well understood, especially, how these genetic lesions individually or in combination contribute mechanistically to human pancreatic oncogenesis is still elusive. Moreover, a cell culture transformation model with sequential accumulation of signature genetic alterations in human pancreatic ductal cells that resembles the multiple-step human pancreatic carcinogenesis is still not established. In the present study, through the stepwise introduction of the signature genetic alterations in PDAC into the HPV16-E6E7 immortalized human pancreatic duct epithelial (HPDE) cell line and the hTERT immortalized human pancreatic ductal HPNE cell line, we developed the novel experimental cell culture transformation models with the most frequent gene alterations in PDAC and further dissected the molecular mechanism of transformation. We demonstrated that the combination of activation of K-ras and Her2, inactivation of p16/p14 and Smad4, or K-ras mutation plus p16 inactivation, was sufficient for the tumorigenic transformation of HPDE or HPNE cells respectively. We found that these transformed cells exhibited enhanced cell proliferation, anchorage-independent growth in soft agar, and grew tumors with PDAC histopathological features in orthotopic mouse model. Molecular analysis showed that the activation of K-ras and Her2 downstream effector pathways –MAPK, RalA, FAK, together with upregulation of cyclins and c-myc were involved in the malignant transformation. We discovered that MDM2, BMP7 and Bmi-1 were overexpressed in the tumorigenic HPDE cells, and that Smad4 played important roles in regulation of BMP7 and Bmi-1 gene expression and the tumorigenic transformation of HPDE cells. IPA signaling pathway analysis of microarray data revealed that abnormal signaling pathways are involved in transformation. This study is the first complete transformation model of human pancreatic ductal cells with the most common gene alterations in PDAC. Altogether, these novel transformation models more closely recapitulate the human pancreatic carcinogenesis from the cell origin, gene lesion, and activation of specific signaling pathway and histopathological features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiotherapy involving the thoracic cavity and chemotherapy with the drug bleomycin are both dose limited by the development of pulmonary fibrosis. From evidence that there is variation in the population in susceptibility to pulmonary fibrosis, and animal data, it was hypothesized that individual variation in susceptibility to bleomycin-induced, or radiation-induced, pulmonary fibrosis is, in part, genetically controlled. In this thesis a three generation mouse genetic model of C57BL/6J (fibrosis prone) and C3Hf/Kam (fibrosis resistant) mouse strains and F1 and F2 (F1 intercross) progeny derived from the parental strains was developed to investigate the genetic basis of susceptibility to fibrosis. In the bleomycin studies the mice received 100 mg/kg (125 for females) of bleomycin, via mini osmotic pump. The animals were sacrificed at eight weeks following treatment or when their breathing rate indicated respiratory distress. In the radiation studies the mice were given a single dose of 14 or 16 Gy (Co$\sp{60})$ to the whole thorax and were sacrificed when moribund. The phenotype was defined as the percent of fibrosis area in the left lung as quantified with image analysis of histological sections. Quantitative trait loci (QTL) mapping was used to identify the chromosomal location of genes which contribute to susceptibility to bleomycin-induced pulmonary fibrosis in C57BL/6J mice compared to C3Hf/Kam mice and to determine if the QTL's which influence susceptibility to bleomycin-induced lung fibrosis in these progenitor strains could be implicated in susceptibility to radiation-induced lung fibrosis. For bleomycin, a genome wide scan revealed QTL's on chromosome 17, at the MHC, (LOD = 11.7 for males and 7.2 for females) accounting for approximately 21% of the phenotypic variance, and on chromosome 11 (LOD = 4.9), in male mice only, adding 8% of phenotypic variance. The bleomycin QTL on chromosome 17 was also implicated for susceptibility to radiation-induced fibrosis (LOD = 5.0) and contributes 7% of the phenotypic variance in the radiation study. In conclusion, susceptibility to both bleomycin-induced and radiation-induced pulmonary fibrosis are heritable traits, and are influenced by a genetic factor which maps to a genomic region containing the MHC. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of chemical carcinogenesis the use of animal models has proved to be a useful tool in dissecting the multistage process of tumor formation. In this regard the outbred SENCAR mouse has been the strain of choice in the analysis of skin carcinogenesis given its high sensitivity to the chemically induced acquisition of premalignant lesions, papillomas, and the later progression of these lesions into squamous cell carcinomas (SCC).^ The derivation of an inbred strain from the SENCAR stock called SSIN, that in spite of a high sensitivity to the development of papillomas lack the ability to transform these premalignant lesions into SCC, suggested that tumor promotion and progression were under the genetic control of different sets of genes.^ In the present study the nature of susceptibility to tumor progression was investigated. Analysis of F1 hybrids between the outbred SENCAR and SSIN mice suggested that there is at least one dominant gene responsible for susceptibility to tumor progression.^ Later development of another inbred strain from the outbred SENCAR stock, that had sensitivity to both tumor promotion and progression, allowed the formulation of a more accurate genetic model. Using this newly derived line, SENCAR B/Pt. and SSIN it was determined that there is one dominant tumor progression susceptibility gene. Linkage analysis showed that this gene maps to mouse chromosome 14 and it was possible to narrow the region to a 16 cM interval.^ In order to better characterize the nature of the progression susceptibility differences between these two strains, their proliferative pattern was investigated. It was found that SENCAR B/Pt, have an enlarged proliferative compartment with overexpression of cyclin D1, p16 and p21. Further studies showed an aberrant overexpression of TGF-$\beta$ in the susceptible strain, an increase in apoptosis, p53 protein accumulation and early loss of connexin 26. These results taken together suggest that papillomas in the SENCAR B/Pt. mice have higher proliferation and may have an increase in genomic instability, these two factors would contribute to a higher sensitivity to tumor progression. ^