906 resultados para genetic and morphological divergence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lepidocolaptes albolineatus (Aves: Dendrocolaptidae) é uma espécie biológica politípica, constituída pelos seguintes táxons: L. a. albolineatus, que ocorre na Área de Endemismo (AE) Guiana, L. a. duidae (AE Imeri), L .a. fuscicapillus (AE Rondônia), L. a. madeirae (AE Rondônia) e L. a .layardi (AEs Tapajós, Xingu e Belém). Os objetivos deste trabalho foram: (1) revisar a validade e a diagnosabilidade dos táxons atualmente agrupados em L. albolineatus com base em caracteres morfológicos, vocais e moleculares e (2) reavaliar os limites interespecíficos entre estes táxons. Foram mensurados 150 espécimes depositados em 8 museus do Brasil e EUA. Para a análise molecular, foram seqüenciados um total de 940 pb do gene mitocondrial ND2 para 35 indivíduos de todos os táxons de L. albolineatus. As análises filogenéticas foram realizadas nos programa PAUP 4.0 b 10 e MrBayes 3.1 utilizando-se os métodos de parcimônia (MP), máxima verossimilhança (MV) e inferência Bayesiana. A combinação de dados morfológicos e moleculares revelou a existência de 5 clados fortemente apoiados estatisticamente: clado 1 (agrupando indivíduos da AE Rondônia), clado 2 (agrupando espécimes das AE Belém, Xingu e Tapajós), clado 3 (incluindo espécimes da AE Inambari), clado 4 (incluindo indivíduos da AE Imeri) e clado 5 (agrupando indivíduos da AE Guiana). Todos os clados corresponderam a táxons já nomeados, exceto o clado 3 para o qual nenhum nome válido se encontra disponível, já que o nome fuscicapillus na verdade se aplica ao clado 1 e, portanto, deve ser considerado sinônimo sênior de madeirae. A principal separação genética e morfológica em L. albolineatus acontece entre o táxon nominal e os demais, embora cada um dos 5 clados possa ser considerado uma espécie distinta (com base no Conceito Filético Geral de Espécie) através de uma combinação única de caracteres morfológicos, vocais e moleculares diagnósticos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Addition of three species to the list is recommended based on recent literature. (Orcaella brevirostris) has been split into the Irrawaddy dolphin (O. brevirostris) and the Australian snubfin dolphin (O. heinsohni). Sotalia fluviatilis has been split into the riverine tucuxi (S. fluviatilis) and the marine "costero" (S. guianensis). Evidence to support both of these splits is convincing, and we recommend that they be recognized in the list. The existence of the Bryde's-whale-like species described in 2003 as Balaenoptera omurai has been confirmed with additional genetic (nuclear) data. While the species clearly exists, the nomenclature is still unsettled because the genetic identity of the holotype specimen of Balaenoptera edeni has not yet been determined. However, the name B. omurai is gaining wide usage in application to the new species, and we propose that it be used provisionally by the Scientific Committee pending the genetic identification of the B. edeni holotype. We recommend that India be urged to facilitate the identification. We recommend continued use of the name Balaenoptera edeni provisionally for both the "ordinary" large form and the small coastal form, recognizing that further genetic and morphological research may justify recognition of two species: B. brydei and B. edeni. We also recommend that any new specimen be referred to B. omurai only after its mtDNA has been sequenced and found to support the identification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparison of mitochondrial and morphological divergence in eight populations of a widespread leaf-litter skink is used to determine the relative importance of geographic isolation and natural selection in generating phenotypic diversity in the Wet Tropics Rainforest region of Australia. The populations occur in two geographically isolated regions, and within each region, in two different habitats (closed rainforest and tall open forest) that span a well characterized ecological gradient. Morphological differences among ancient geographic isolates (separated for several million years, judging by their mitochondrial DNA sequence divergence) were slight, but morphological and life history differences among habitats were large and occurred despite moderate to high levels of mitochondrial gene flow. A field experiment identified avian predation as one potential agent of natural selection. These results indicate that natural selection operating across ecological gradients can be more important than geographic isolation in similar habitats in generating phenotypic diversity. In addition, our results indicate that selection is sufficiently strong to overcome the homogenizing effects of gene flow, a necessary first step toward speciation in continuously distributed populations. Because ecological gradients may be a source of evolutionary novelty, and perhaps new species, their conservation warrants greater attention. This is particularly true in tropical regions, where most reserves do not include ecological gradients and transitional habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human settlement of Polynesia was a major event in world prehistory. Despite the vastness of the distances covered, research suggests that prehistoric Polynesian populations maintained spheres of continuing interaction for at least some period of time in some regions. A low level of genetic variation in ancestral Polynesian populations, genetic admixture (both prehistoric and post-European contact), and severe population crashes resulting from introduction of European diseases make it difficult to trace prehistoric human mobility in the region by using only human genetic and morphological markers. We focus instead on an animal that accompanied the ancestral Polynesians on their voyages. DNA phylogenies derived from mitochondrial control-region sequences of Pacific rats (Rattus exulans) from east Polynesia are presented. A range of specific hypotheses regarding the degree of interaction within Polynesia are tested. These include the issues of multiple contacts between central east Polynesia and the geographically distinct archipelagos of New Zealand and Hawaii. Results are inconsistent with models of Pacific settlement involving substantial isolation after colonization and confirm the value of genetic studies on commensal species for elucidating the history of human settlement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Programa de Pós Graduação em Biologia Animal, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acquiring sufficient information on the genetic variation, genetic differentiation, and the ecological and genetic relationships among individuals and populations are essential for establishing guidelines on conservation and utilization of the genetic resources of a species, and more particularly when biotic and abiotic stresses are considered. The aim of this study was to assess the extent and pattern of genetic variation in date palm (Phoenix dacttylifera L) cultivars; the genetic diversity and structure in its populations occurring over geographical ranges; the variation in economically and botanically important traits of it and the variation in its drought adaptive traits, in conservation and utilization context. In this study, the genetic diversity and relationships among selected cultivars from Sudan and Morocco were assessed using microsatellite markers. Microsatellite markers were also used to investigate the genetic diversity within and among populations collected from different geographic locations in Sudan. In a separate investigation, fruits of cultivars selected from Sudan, involved morphological and chemical characterization, and morphological and DNA polymorphism of the mother trees were also investigated. Morphological and photosynthetic adjustments to water stress were studied in the five most important date palm cultivars in Sudan, namely, Gondaila, Barakawi, Bitamoda, Khateeb and Laggai; and the mechanism enhancing photosynthetic gas exchange in date palm under water stress was also investigated. Results showed a significant (p < 0.001, t-test) differentiation between Sudan and Morocco groups of cultivars. However, the major feature of all tested cultivars was the complete lack of clustering and the absence of cultivars representing specific clones. The results indicated high genetic as well as compositional and morphological diversity among cultivars; while, compositional and morphological traits were found to be characteristic features that strongly differentiate cultivars as well as phenotypes. High genetic diversity was observed also in different populations. Slight but significant (p < 0.01, AMOVA) divergence was observed for soft and dry types; however, the genetic divergence among populations was relatively weak. The results showed a complex genetic relationships between some of the tested populations especially when isolation by distance was considered. The results of the study also revealed that date palm cultivars and phenotypes possess specific direct or interaction effects due to water availability on a range of morphological and physiological traits. Soft and dry phenotypes responded differently to different levels of water stress, while the dry phenotype was more sensitive and conservative. The results indicated that date palm has high fixation capacity to photosynthetic CO2 supply with interaction effect to water availability, which can be considered as advantageous when coping with stresses that may arise with climate change. In conclusion, although a large amount of diversity exists among date palm germplasm, the findings in this study show that the role of biological nature of the tree, isolation by distance and environmental effects on structuring date palm genome was highly influenced by human impacts. Identity of date palm cultivars as developed and manipulated by date palm growers, in the absence of scientific breeding programmes, may continue to mainly depend on tree morphology and fruit characters. The pattern of genetic differentiation may cover specific morphological and physiological traits that contribute to adaptive mechanisms in each phenotype. These traits can be considered for further studies related to drought adaptation in date palm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To collect information about the genetic diversity of the plankton community and to study how plankton respond to environmental conditions, plankton samples were collected from five stations representing different trophic levels in a shallow, eutrophic lake (Lake Donghu), and investigated by PCR-DGGE fingerprinting. A total of 100 bands (61 of 16S rDNA bands and 39 of 18S rDNA bands) were detected. The DGGE bands unique to any single station accounted for 38% of the total bands, whereas common bands detected at all five stations accounted for only 11%. Using UPGMA clustering and MDS ordination of DGGE fingerprints, stations I and II were found to initially group together into one cluster, which was later joined by station V. Stations III and IV were isolated into two separate groups of one station each. Some differences in grouping relationships were found when analysis was completed on the basis of chemical characteristics and morphological composition, with zooplankton composition showing the greatest variability. However, the most similar stations (I and II) were always initially grouped into one cluster. Moreover, stations that exhibited the same or similar trophic level (stations III and IV), but different concentrations of heavy metals, were further differentiated by the DGGE method. Results of the present study indicated that PCR-DGGE fingerprinting was more sensitive than the traditional methods, as other studies suggested. Additionally, PCR-DGGE appears to be more appropriate for diversity characterization of the plankton community, as it is more canonical, systematic, and effective. Most importantly, fingerprinting results are more convenient for the comparative analyses between different studies. Therefore, the use of the described fingerprinting analysis may provide an operable and sensitive biomonitoring approach to identify critical, and potentially negative, stress within an aquatic ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fungal species Cryptococcus neoformans and Cryptococcus gattii cause respiratory and neurological disease in animals and humans following inhalation of basidiospores or desiccated yeast cells from the environment. Sexual reproduction in C. neoformans and C. gattii is controlled by a bipolar system in which a single mating type locus (MAT) specifies compatibility. These two species are dimorphic, growing as yeast in the asexual stage, and producing hyphae, basidia, and basidiospores during the sexual stage. In contrast, Filobasidiella depauperata, one of the closest related species, grows exclusively as hyphae and it is found in association with decaying insects. Examination of two available strains of F. depauperata showed that the life cycle of this fungal species shares features associated with the unisexual or same-sex mating cycle in C. neoformans. Therefore, F. depauperata may represent a homothallic and possibly an obligately sexual fungal species. RAPD genotyping of 39 randomly isolated progeny from isolate CBS7855 revealed a new genotype pattern in one of the isolated basidiospores progeny, therefore suggesting that the homothallic cycle in F. depauperata could lead to the emergence of new genotypes. Phylogenetic analyses of genes linked to MAT in C. neoformans indicated that two of these genes in F. depauperata, MYO2 and STE20, appear to form a monophyletic clade with the MATa alleles of C. neoformans and C. gattii, and thus these genes may have been recruited to the MAT locus before F. depauperata diverged. Furthermore, the ancestral MATa locus may have undergone accelerated evolution prior to the divergence of the pathogenic Cryptococcus species since several of the genes linked to the MATa locus appear to have a higher number of changes and substitutions than their MATalpha counterparts. Synteny analyses between C. neoformans and F. depauperata showed that genomic regions on other chromosomes displayed conserved gene order. In contrast, the genes linked to the MAT locus of C. neoformans showed a higher number of chromosomal translocations in the genome of F. depauperata. We therefore propose that chromosomal rearrangements appear to be a major force driving speciation and sexual divergence in these closely related pathogenic and saprobic species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genus Osmundea is a strongly supported monophyletic group within the Laurencia complex and shows a disjunct distribution occurring in the North-East and South-West Pacific, the Indian and Atlantic oceans and the Mediterranean Sea. Its phenotypic plasticity on the Canary Islands may be the result of the high ecological variability partially due to the particular oceanographic characteristics in this region. The combination of molecular analyses based on the comparison of the chloroplast-encoded rbcL sequences and morphological data allowed us to delimit three distinct taxa from the coasts of the Canarian Archipelago: Osmundea pinnatifida, Osmundea truncata and an unidentified species, Osmundea sp. Moreover, the high value of genetic divergence between Osmundea sp. and the rest of the Osmundea species suggests that this taxon should be assigned to a new species within the Osmundea genus. Occurrence of O. hybrida and O. oederi (synonym: O. ramosissima) has not been confirmed. Our results also suggest a possibly questionable record of the taxa O. hybrida and O. oederi on the Canary Islands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To be able to interpret patterns of biodiversity it is important to understand the processes by which new species evolve and how closely related species remain reproductively isolated and ecologically differentiated. Divergence and differentiation can vary during speciation and it can be seen in different stages. Groups of closely related taxa constitute important case studies to understand species and new biodiversity formation. However, it is important to assess the divergence among them at different organismal levels and from an integrative perspective. For this purpose, this study used the brown seaweeds genus Fucus as a model to study speciation, as they constitute a good opportunity to study divergence at different stages. We investigated the divergence patterns in Fucus species from two marginal areas (northern Baltic Sea and the Tjongspollen area), based on phenetic, phylogenetic and biological taxonomical criteria that are respectively characterised by algal morphology, allele frequencies of five microsatellite loci and levels of secondary polyphenolic compounds called phlorotannins. The results from this study showed divergence at morphological and genetic levels to certain extent but complete lack of divergence at biochemical level (i.e. constitutive phlorotannin production) in the Baltic Sea or Norway. Morphological divergence was clearly evident in Tjongspollen (Norway) among putative taxa as they were identified in the field and this divergence corresponds with their neutral genetic divergence. In the Baltic, there are some distinguishable patterns in the morphology of the swedish and finnish individuals according to locality to certain extent but not among putative taxa within localities. Likewise, these morphological patterns have genetic correspondence among localities but not within each locality. At the biochemical level, measured by the phlorotannin contents there were neither evidence of divergence in Norway or the Baltic Sea nor any discernable aggregation pattern among or within localities. Our study have contributed with further understanding of the Baltic Sea Fucus system and its intriguingly rapid and recent divergence as well as of the Tjongspollen area systems where formally undescribed individuals have been observed for the first time; in fact they appear largely differentiated and they may well warrant a new species status. In current times, climate change threatens, peripheral ecosystems, biodiversity, and increased knowledge of processes generating and maintaining biodiversity in those ecosystems seem particularly important and needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although salamanders are characteristic amphibians in Holarctic temperate habitats, in tropical regions they have diversified evolutionarily only in tropical America. An adaptive radiation centered in Middle America occurred late in the history of a single clade, the supergenus Bolitoglossa (Plethodontidae), and large numbers of species now occur in diverse habitats. Sublineages within this clade decrease in number from the northern to southern parts of Middle America, and in Costa Rica, there are but three. Despite this phylogenetic constraint, Costa Rica has many species; the number of salamander species on one local elevational transect in the Cordillera de Talamanca may be the largest for any such transect in the world. Extraordinary variation in sequences of the mitochondrial gene cytochrome b within a clade of the genus Bolitoglossa in Costa Rica reveals strong phylogeographic structure within a single species, Bolitoglossa pesrubra. Allozymic variation in 19 proteins reveals a pattern largely concordant with the mitochondrial DNA phylogeography. More species exist than are currently recognized. Diversification occurs in restricted geographic areas and involves sharp geographic and elevational differentiation and zonation. In their degree of genetic differentiation at a local scale, these species of the deep tropics exceed the known variation of extratropical salamanders, which also differ in being less restricted in elevational range. Salamanders display “tropicality” in that although speciose, they are usually local in distribution and rare. They display strong ecological and physiological differentiation that may contribute importantly to morphological divergence and species formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural populations inhabiting the same environment often independently evolve the same phenotype. Is this replicated evolution a result of genetic constraints imposed by patterns of genetic covariation? We looked for associations between directions of morphological divergence and the orientation of the genetic variance-covariance matrix (G) by using an experimental system of morphological evolution in two allopatric nonsister species of rainbow fish. Replicate populations of both Melanotaenia eachamensis and Melanotaenia duboulayi have independently adapted to lake versus stream hydrodynamic environments. The major axis of divergence (z) among all eight study populations was closely associated with the direction of greatest genetic variance (g(max)), suggesting directional genetic constraint on evolution. However, the direction of hydrodynamic adaptation was strongly associated with vectors of G describing relatively small proportions of the total genetic variance, and was only weakly associated with g(max). In contrast, divergence between replicate populations within each habitat was approximately proportional to the level of genetic variance, a result consistent with theoretical predictions for neutral phenotypic divergence. Divergence between the two species was also primarily along major eigenvectors of G. Our results therefore suggest that hydrodynamic adaptation in rainbow fish was not directionally constrained by the dominant eigenvector of G. Without partitioning divergence as a consequence of the adaptation of interest (here, hydrodynamic adaptation) from divergence due to other processes, empirical studies are likely to overestimate the potential for the major eigenvectors of G to directionally constrain adaptive evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mud crab (Scylla spp.) aquaculture industry has expanded rapidly in recent years in many countries in the Indo - West Pacific (IWP) region as an alternative to marine shrimp culture because of significant disease outbreaks and associated failures of many shrimp culture industries in the region. Currently, practices used to produce and manage breeding crabs in hatcheries may compromise levels of genetic diversity, ultimately compromising growth rates, disease resistance and stock productivity. Therefore, to avoid “genetic pollution” and its harmful effects and to promote further development of mud crab aquaculture and fisheries in a sustainable way, a greater understanding of the genetic attributes of wild and cultured mud crab stocks is required. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations for multiple purposes including for commercial production, recreation and conservation and to increase profitability and sustainability of newly emerging crab culture industries. Phylogeographic patterns and the genetic structure of Asian mud crab populations across the IWP were assessed to determine if they were concordant with those of other widespread taxa possessing pelagic larvae of relatively long duration. A 597 bp fragment of the mitochondrial DNA COI gene was amplified and screened for variation in a total of 297 individuals of S. paramamosain from six sampling sites across the species’ natural geographical distribution in the IWP and 36 unique haplotypes were identified. Haplotype diversities per site ranged from 0.516 to 0.879. Nucleotide diversity estimates among haplotypes were 0.11% – 0.48%. Maximum divergence observed among S. paramamosain samples was 1.533% and samples formed essentially a single monophyletic group as no obvious clades were related to geographical location of sites. A weak positive relationship was observed however, between genetic distance and geographical distance among sites. Microsatellite markers were then used to assess contemporary gene flow and population structure in Asian mud crab populations sampled across their natural distribution in the IWP. Eight microsatellite loci were screened in sampled S. paramamosain populations and all showed high allelic diversity at all loci in sampled populations. In total, 344 individuals were analysed, and 304 microsatellite alleles were found across the 8 loci. The mean number of alleles per locus at each site ranged from 20.75 to 28.25. Mean allelic richness per site varied from 17.2 to 18.9. All sites showed high levels of heterozygosity as average expected heterozygosities for all loci ranged from 0.917 – 0.953 while mean observed heterozygosity ranged from 0.916 – 0.959. Allele diversities were similar at all sites and across all loci. The results did not show any evidence for major differences in allele frequencies among sites and patterns of allele frequencies were very similar in all populations across all loci. Estimates of population differentiation (FST) were relatively low and most probably largely reflect intra – individual variation for very highly variable loci. Results from nDNA analysis showed evidence for only very limited population genetic structure among sampled S. paramamosain, and a positive and significant association for genetic and geographical distance among sample sites. Microsatellite markers were then employed to determine if adequate levels of genetic diversity has been captured in crab hatcheries for the breeding cycle. The results showed that all microsatellite loci were polymorphic in hatchery samples. Culture populations were in general, highly genetically depauperate, compared with comparable wild populations, with only 3 to 8 alleles recorded for the same loci set per population. In contrast, very high numbers of alleles per locus were found in reference wild S. paramamosain populations, which ranged from 18 to 46 alleles per locus per population. In general, this translates into a 3 to 10 fold decline in mean allelic richness per locus in all culture stocks compared with wild reference counterparts. Furthermore, most loci in all cultured S. paramamosain samples showed departures from HWE equilibrium. Allele frequencies were very different in culture samples from that present in comparable wild reference samples and this in particular, was reflected in a large decline in allele diversity per locus. The pattern observed was best explained by significant impacts of breeding practices employed in hatcheries rather than natural differentiation among wild populations used as the source of brood stock. Recognition of current problems and management strategies for the species both for the medium and long-term development of the new culture industry are discussed. The priority research to be undertaken over the medium term for S. paramamosain should be to close the life cycle fully to allow individuals to be bred on demand and their offspring equalised to control broodstock reproductive contributions. Establishing a broodstock register and pedigree mating system will be required before any selection program is implemented. This will ensure that sufficient genetic variation will be available to allow genetic gains to be sustainably achieved in a future stock improvement program. A fundamental starting point to improve hatchery practices will be to encourage farmers and hatchery managers to spawn more females in their hatcheries as it will increase background genetic diversity in culture stocks. Combining crablet cohorts from multiple hatcheries into a single cohort for supply to farmers or rotation of breeding females regularly in hatcheries will help to address immediate genetic diversity problems in culture stocks. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations more efficiently. Over the long-term, application of data on genetic diversity in wild and cultured stocks of Asian mud crab will contribute to development of sustainable and productive culture industries in Vietnam and other countries in the IWP and can contribute towards conservation of wild genetic resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptation to replicate environments is often achieved through similar phenotypic solutions. Whether selection also produces convergent genomic changes in these situations remains largely unknown. The variable groundsel, Senecio lautus, is an excellent system to investigate the genetic underpinnings of convergent evolution, because morphologically similar forms of these plants have adapted to the same environments along the coast of Australia. We compared range-wide patterns of genomic divergence in natural populations of this plant and searched for regions putatively affected by natural selection. Our results indicate that environmental adaptation followed complex genetic trajectories, affecting multiple loci, implying both the parallel recruitment of the same alleles and the divergence of completely different genomic regions across geography. An analysis of the biological functions of candidate genes suggests that adaptation to coastal environments may have occurred through the recruitment of different genes participating in similar processes. The relatively low genetic convergence that characterizes the parallel evolution of S. lautus forms suggests that evolution is more constrained at higher levels of biological organization.