774 resultados para fuzzy topology.
Resumo:
The problem of topology control is to assign per-node transmission power such that the resulting topology is energy efficient and satisfies certain global properties such as connectivity. The conventional approach to achieve these objectives is based on the fundamental assumption that nodes are socially responsible. We examine the following question: if nodes behave in a selfish manner, how does it impact the overall connectivity and energy consumption in the resulting topologies? We pose the above problem as a noncooperative game and use game-theoretic analysis to address it. We study Nash equilibrium properties of the topology control game and evaluate the efficiency of the induced topology when nodes employ a greedy best response algorithm. We show that even when the nodes have complete information about the network, the steady-state topologies are suboptimal. We propose a modified algorithm based on a better response dynamic and show that this algorithm is guaranteed to converge to energy-efficient and connected topologies. Moreover, the node transmit power levels are more evenly distributed, and the network performance is comparable to that obtained from centralized algorithms.
Resumo:
In the identification of complex dynamic systems using fuzzy neural networks, one of the main issues is the curse of dimensionality, which makes it difficult to retain a large number of system inputs or to consider a large number of fuzzy sets. Moreover, due to the correlations, not all possible network inputs or regression vectors in the network are necessary and adding them simply increases the model complexity and deteriorates the network generalisation performance. In this paper, the problem is solved by first proposing a fast algorithm for selection of network terms, and then introducing a refinement procedure to tackle the correlation issue. Simulation results show the efficacy of the method.
Resumo:
This paper studies the dynamic pricing problem of selling fixed stock of perishable items over a finite horizon, where the decision maker does not have the necessary historic data to estimate the distribution of uncertain demand, but has imprecise information about the quantity demand. We model this uncertainty using fuzzy variables. The dynamic pricing problem based on credibility theory is formulated using three fuzzy programming models, viz.: the fuzzy expected revenue maximization model, a-optimistic revenue maximization model, and credibility maximization model. Fuzzy simulations for functions with fuzzy parameters are given and embedded into a genetic algorithm to design a hybrid intelligent algorithm to solve these three models. Finally, a real-world example is presented to highlight the effectiveness of the developed model and algorithm.