959 resultados para fungal pathogens
Resumo:
Infectious diseases, both in their endemic and epidemic forms, have shaped the human genome. Ecology has also contributed to geographically constrained pressures on human populations. There are now multiple examples of population-specific genetic variants that modulate susceptibility to infection - several of which have been observed solely in Europeans. The pathogen genome also mutates and adapts to individuals and common alleles in populations. The current understanding has benefited from genome-wide association studies as well as from rapid progress in the genetic characterization of Mendelian immunodeficiencies that are defined by susceptibility to specific pathogens. It is expected that current efforts to characterize rare human genetic variants will contribute to the understanding of severe manifestations of common infections in European and other human groups.
Resumo:
Access to new biological sources is a key element of natural product research. A particularly large number of biologically active molecules have been found to originate from microorganisms. Very recently, the use of fungal co-culture to activate the silent genes involved in metabolite biosynthesis was found to be a successful method for the induction of new compounds. However, the detection and identification of the induced metabolites in the confrontation zone where fungi interact remain very challenging. To tackle this issue, a high-throughput UHPLC-TOF-MS-based metabolomic approach has been developed for the screening of fungal co-cultures in solid media at the petri dish level. The metabolites that were overexpressed because of fungal interactions were highlighted by comparing the LC-MS data obtained from the co-cultures and their corresponding mono-cultures. This comparison was achieved by subjecting automatically generated peak lists to statistical treatments. This strategy has been applied to more than 600 co-culture experiments that mainly involved fungal strains from the Fusarium genera, although experiments were also completed with a selection of several other filamentous fungi. This strategy was found to provide satisfactory repeatability and was used to detect the biomarkers of fungal induction in a large panel of filamentous fungi. This study demonstrates that co-culture results in consistent induction of potentially new metabolites.
Resumo:
Biocontrol pseudomonads are most known to protect plants from fungal diseases and to increase plant yield, while intriguing aspects on insecticidal activity have been discovered only recently. Here, we demonstrate that Fit toxin producing pseudomonads, in contrast to a naturally Fit-deficient strain, exhibit potent oral activity against larvae of Spodoptera littoralis, Heliothis virescens and Plutella xylostella, all major insect pests of agricultural crops. Spraying plant leaves with suspensions containing only 1000 Pseudomonas cells per ml was sufficient to kill 70-80% of Spodoptera and Heliothis larvae. Monitoring survival kinetics and bacterial titres in parallel, we demonstrate that Pseudomonas fluorescens CHA0 and Pseudomonas chlororaphis PCL1391, two bacteria harbouring the Fit gene cluster colonize and kill insects via oral infection. Using Fit mutants of CHA0 and PCL1391, we show that production of the Fit toxin contributes substantially to oral insecticidal activity. Furthermore, the global regulator GacA is required for full insecticidal activity. Our findings demonstrate the lethal oral activity of two root-colonizing pseudomonads so far known as potent antagonists of fungal plant pathogens. This adds insecticidal activity to the existing biocontrol repertoire of these bacteria and opens new perspectives for applications in crop pest control and in research on their ecological behaviour.
Resumo:
The identification of clinical risk factors for AIDS in patients with preserved immune function is of significant interest. We examined whether patients with fungal infection (FI) and CD4 cell count >or=200/microl were at higher risk of disease progression in the era of cART. 11,009 EuroSIDA patients were followed from their first CD4 cell count >or=200/microl after 1 January 1997 until progression to any non-azoles/amphotericin B susceptible (AAS) AIDS disease, last visit or death. Initiation of antimycotic therapy (AMT) was used as a marker of FI and was modelled as a time-updated covariate using Poisson regression. After adjustment for current CD4 cell count, HIV-RNA, starting cART and diagnosis of AAS-AIDS, AMT was significantly associated with an increased incidence of non-AAS-AIDS (IRR=1.55, 95% CI 1.17-2.06, p=0.0024). Despite low incidence of AIDS in the cART era, FI in patients with a CD4 cell count >or=200/microl is associated with a 55% higher risk of non-AAS-AIDS (95% confidence interval 1.17-2.06, p=0.0024). These data suggest that patients with FI are more immune compromized than would be expected from their CD4 cell count alone. FI can be used as a clinical marker for disease progression and indirect indicator for initiation/changing cART in settings where laboratory facilities are limited.
Resumo:
As culture-based methods for the diagnosis of invasive fungal diseases (IFD) in leukemia and hematopoietic SCT patients have limited performance, non-culture methods are increasingly being used. The third European Conference on Infections in Leukemia (ECIL-3) meeting aimed at establishing evidence-based recommendations for the use of biological tests in adult patients, based on the grading system of the Infectious Diseases Society of America. The following biomarkers were investigated as screening tests: galactomannan (GM) for invasive aspergillosis (IA); β-glucan (BG) for invasive candidiasis (IC) and IA; Cryptococcus Ag for cryptococcosis; mannan (Mn) Ag/anti-mannan (A-Mn) Ab for IC, and PCR for IA. Testing for GM, Cryptococcus Ag and BG are included in the revised EORTC/MSG (European Organization for Research and Treatment of Cancer/Mycoses Study Group) consensus definitions for IFD. Strong evidence supports the use of GM in serum (A II), and Cryptococcus Ag in serum and cerebrospinal fluid (CSF) (A II). Evidence is moderate for BG detection in serum (B II), and the combined Mn/A-Mn testing in serum for hepatosplenic candidiasis (B III) and candidemia (C II). No recommendations were formulated for the use of PCR owing to a lack of standardization and clinical validation. Clinical utility of these markers for the early management of IFD should be further assessed in prospective randomized interventional studies.
Resumo:
The objective of this work was to evaluate isolates of Trichoderma harzianum regarding biocontrol of common bean seed-borne pathogens, plant growth promotion, and rhizosphere competence. Five isolates of T. harzianum were evaluated and compared with commercial isolate (Ecotrich), Carboxin+Thiram, and an absolute control. Bean seeds of the cultivar Jalo Precoce, contaminated with Aspergillus, Cladosporium, and Sclerotinia sclerotiorum, were microbiolized with antagonists, and seed health tests were carried out. Isolates were evaluated on autoclaved substrate and in field conditions. Ten days after sowing (DAS), plant length was measured. To test rhizosphere competence, isolates were applied in boxes containing autoclaved washed sand, and root colonization was evaluated at 10 DAS, using five plants per box. The most effective isolates in the seed health tests were: CEN287 and CEN289 to control Aspergillus; the commercial isolate to control Cladosporium; and CEN287 and CEN316 to control S. sclerotiorum. Isolates CEN289 and CEN290 promoted bean growth in greenhouse and field. Seed treatment with T. harzianum reduces the incidence of Aspergillus, Cladosporium, and S. sclerotiorum in 'Jalo Precoce' common bean seeds.
Resumo:
Over the past two decades, several fungal outbreaks have occurred, including the high-profile 'Vancouver Island' and 'Pacific Northwest' outbreaks, caused by Cryptococcus gattii, which has affected hundreds of otherwise healthy humans and animals. Over the same time period, C. gattii was the cause of several additional case clusters at localities outside of the tropical and subtropical climate zones where the species normally occurs. In every case, the causative agent belongs to a previously rare genotype of C. gattii called AFLP6/VGII, but the origin of the outbreak clades remains enigmatic. Here we used phylogenetic and recombination analyses, based on AFLP and multiple MLST datasets, and coalescence gene genealogy to demonstrate that these outbreaks have arisen from a highly-recombining C. gattii population in the native rainforest of Northern Brazil. Thus the modern virulent C. gattii AFLP6/VGII outbreak lineages derived from mating events in South America and then dispersed to temperate regions where they cause serious infections in humans and animals.
Resumo:
Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ~13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator.
Resumo:
BACKGROUND: Candida glabrata follows C. albicans as the second or third most prevalent cause of candidemia worldwide. These two pathogenic yeasts are distantly related, C. glabrata being part of the Nakaseomyces, a group more closely related to Saccharomyces cerevisiae. Although C. glabrata was thought to be the only pathogenic Nakaseomyces, two new pathogens have recently been described within this group: C. nivariensis and C. bracarensis. To gain insight into the genomic changes underlying the emergence of virulence, we sequenced the genomes of these two, and three other non-pathogenic Nakaseomyces, and compared them to other sequenced yeasts. RESULTS: Our results indicate that the two new pathogens are more closely related to the non-pathogenic N. delphensis than to C. glabrata. We uncover duplications and accelerated evolution that specifically affected genes in the lineage preceding the group containing N. delphensis and the three pathogens, which may provide clues to the higher propensity of this group to infect humans. Finally, the number of Epa-like adhesins is specifically enriched in the pathogens, particularly in C. glabrata. CONCLUSIONS: Remarkably, some features thought to be the result of adaptation of C. glabrata to a pathogenic lifestyle, are present throughout the Nakaseomyces, indicating these are rather ancient adaptations to other environments. Phylogeny suggests that human pathogenesis evolved several times, independently within the clade. The expansion of the EPA gene family in pathogens establishes an evolutionary link between adhesion and virulence phenotypes. Our analyses thus shed light onto the relationships between virulence and the recent genomic changes that occurred within the Nakaseomyces.
Resumo:
Plants activate direct and indirect defenses in response to insect egg deposition. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. Even though this innate immune response did not affect egg survival in Arabidopsis, we could show that different insect eggs elicit specific gene expression changes. Additionally, egg- induced necrosis could be observed in a variety of plants from different families ranging from dicotyledonous plants to monocots, suggesting that insect-egg detection by plants is a widespread mechanism and that different insect species contain elicitors of immune responses. Extracts from caterpillars and eggs contain elicitors that co-purified over several extraction steps. Chemical fractionation of caterpillar extracts lead to the characterisation of an active compound that was determined to be a triglyceride by NMR analysis. The exact structure of the side chains as well as the elicitor's presence in insect eggs have yet to be confirmed.We also found that the plant defense signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls the defense against fungal and bacterial pathogens whereas it negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defense against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect-responsive genes after challenge with caterpillars, suggesting that egg-derived elicitors suppress plant defense. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not found in the SA-deficient mutant sid2-l, indicating that SA mediates this phenomenon. These data reveal an intriguing facet of the crosstalk between SA- and JA-signalling pathways and suggest that insects have evolved a way to suppress the induction of defense genes by laying eggs that release elicitors. Additionally, we demonstrated that mutants of known crosstalk regulators, including nprl-1, tga2356, ein2-l and wrky70-l, are not affected in egg-induced suppression of herbivore defenses. JA treatment was not able to alleviate this SA/JA negative crosstalk, suggesting that this suppression operates through a novel mechanism downstream of JA biosynthesis.
Resumo:
In Pseudomonas protegens CHA0 and other fluorescent pseudomonads, the Gac/Rsm signal transduction pathway controls secondary metabolism and suppression of fungal root pathogens via the expression of regulatory small RNAs (sRNAs). Because of its high cost, this pathway needs to be protected from overexpression and to be turned off in response to environmental stress such as the lack of nutrients. However, little is known about its underlying molecular mechanisms. In this study, we demonstrated that Lon protease, a member of the ATP-dependent protease family, negatively regulated the Gac/Rsm cascade. In a lon mutant, the steady-state levels and the stability of the GacA protein were significantly elevated at the end of exponential growth. As a consequence, the expression of the sRNAs RsmY and RsmZ and that of dependent physiological functions such as antibiotic production were significantly enhanced. Biocontrol of Pythium ultimum on cucumber roots required fewer lon mutant cells than wild-type cells. In starved cells, the loss of Lon function prolonged the half-life of the GacA protein. Thus, Lon protease is an important negative regulator of the Gac/Rsm signal transduction pathway in P. protegens.
Resumo:
Social life is generally associated with an increased exposure to pathogens and parasites, due to factors such as high population density, frequent physical contact and the use of perennial nest sites. However, sociality also permits the evolution of new collective behavioural defences. Wood ants, Formica paralugubris, commonly bring back pieces of solidified coniferous resin to their nest. Many birds and a few mammals also incorporate green plant material into their nests. Collecting plant material rich in volatile compounds might be an efficient way to fight bacteria and fungi. However, no study has demonstrated that this behaviour has a positive effect on survival. Here, we provide the first experimental evidence that animals using plant compounds with antibacterial and antifungal properties survive better when exposed to detrimental micro-organisms. The presence of resin strongly improves the survival of F. paralugubris adults and larvae exposed to the bacteria Pseudomonas fluorescens, and the survival of larvae exposed to the entomopathogenic fungus Metarhizium anisopliae. These results show that wood ants capitalize on the chemical defences which have evolved in plants to collectively protect themselves against pathogens.
Resumo:
The capacity of fungi to serve as vectors for the dispersion of pollutant-degrading bacteria was analyzed in laboratory model systems mimicking water-saturated (agar surfaces) and unsaturated soil environments (glass-bead-filled columns). Two common soil fungi (Fusarium oxysporum and Rhexocercosporidium sp.) forming hydrophilic and hydrophobic mycelia, respectively, and three polycyclic aromatic hydrocarbon degrading bacteria (Achromobacter sp. SK1, Mycobacterium frederiksbergense LB501TG, and Sphingomonas sp. L138) were selected based on the absence of mutual antagonistic effects. It was shown that fungal hyphae act as vectors for bacterial transport with mobilization strongly depending on the specific microorganisms chosen: The motile strain Achromobacter sp. SK1 was most efficiently spread along hyphae of hydrophilic F. oxysporum in both model systems with transport velocities of up to 1 cm d(-1), whereas no dispersion of the two nonmotile strains was observed in the presence of F. oxysporum. By contrast, none of the bacteria was mobilized along the hydrophobic mycelia of Rhexocercosporidium sp. growing on agar surfaces. In column experiments however, strain SK1 was mobilized by Rhexocercosporidium sp. It is hypothesized that bacteria may move by their intrinsic motilitythrough continuous (physiological) liquid films forming around fungal hyphae. The results of this study suggest that the specific stimulation of indigenous fungi may be a strategy to mobilize pollutant-degrading bacteria leading to their homogenization in polluted soil thereby improving bioremediation.
Resumo:
Despite using modern microbiological diagnostic approaches, the aetiological agents of pneumonia remain unidentified in about 50% of cases. Some bacteria that grow poorly or not at all in axenic media used in routine clinical bacteriology laboratory but which can develop inside amoebae may be the agents of these lower respiratory tract infections (RTIs) of unexplained aetiology. Such amoebae-resisting bacteria, which coevolved with amoebae to resist their microbicidal machinery, may have developed virulence traits that help them survive within human macrophages, i.e. the first line of innate immune defence in the lung. We review here the current evidence for the emerging pathogenic role of various amoebae-resisting microorganisms as agents of RTIs in humans. Specifically, we discuss the emerging pathogenic roles of Legionella-like amoebal pathogens, novel Chlamydiae (Parachlamydia acanthamoebae, Simkania negevensis), waterborne mycobacteria and Bradyrhizobiaceae (Bosea and Afipia spp.).
Resumo:
Water delivered by dental units during routine dental practice is densely contaminated by bacteria. The aim of this study was to determine actual isolation of the microorganisms sprayed from Dental Unit Water Lines (DUWLs) when enrichment cultures are performed and to compare frequencies with those obtained without enrichment cultures. Moreover, the antimicrobial susceptibilities of the microorganisms isolated were also studied. Water samples were collected from one hundred dental equipments in use at Dental Hospital of our University in order to evaluate the presence/absence of microorganisms and to perform their presumptive identification. Aliquots from all of the samples were inoculated in eight different media including both enrichment and selective media. Minimal inhibitory concentrations (MIC) were determined by the broth dilution method. The results herein reported demonstrate that most of the DUWLs were colonized by bacteria from human oral cavity; when enrichment procedures were applied the percentage of DUWLs with detectable human bacteria was one hundred percent. The results showed that in order to evaluate the actual risk of infections spread by DUWLs the inclusion of a step of pre-enrichment should be performed. The need for devices preventing bacterial contamination of DUWLs is a goal to be achieved in the near future that would contribute to maintain safety in dental medical assistance