994 resultados para frame structure
Resumo:
The HLA-G gene is predominantly expressed at the maternal-fetal interface. It has been associated with maternal-fetal tolerance and in the inhibition of cytotoxic T lymphocyte and natural killer cytolytic functions. At least two variations in the 3` untranslated region (UTR) of HLA-G locus are associated with HLA-G expression levels, the 14-bp deletion/insertion polymorphism and the +3142 single-nucleotide polymorphism (SNP). However, this region has not been completely characterized yet. The variability of the 3`UTR of HLA-G gene and its haplotype structure were characterized in 155 individuals from Brazil, as well as HLA-G alleles associated with each of the 3`UTR haplotype. The following eight variation sites were detected: the 14-bp polymorphism and SNPs at the positions +3003T/C, +3010C/G, +3027A/C, +3035C/T, +3142G/C, +3187A/G and +3196C/G. Similarly, 11 different 3`UTR haplotypes were identified and several HLA-G alleles presented only one 3`UTR haplotype. In addition, a high linkage disequilibrium among the variation sites was detected, especially among the 14-bp insertion and the alleles +3142G and +3187A, all previously associated with low mRNA availability, demonstrating that their effects are not independent. The detailed analyses of 3`UTR of the HLA-G locus may shed some light into mechanisms underlying the regulation of HLA-G expression. Genes and Immunity (2010) 11, 134-141; doi: 10.1038/gene.2009.74; published online 1 October 2009
Resumo:
Dps, found in many eubacterial and archaebacterial species, appears to protect cells from oxidative stress and/or nutrient-limited environment. Dps has been shown to accumulate during the stationary phase, to bind to DNA non-specifically, and to form a crystalline structure that compacts and protects the chromosome. Our previous results have indicated that Dps is glycosylated at least for a certain period of the bacterial cell physiology and this glycosylation is thought to be orchestrated by some factors not yet understood, explaining our difficulties in standardizing the Dps purification process. In the present work, the open reading frame of the dps gene, together with all the upstream regulatory elements, were cloned into a PCR cloning vector. As a result, the expression of dps was also controlled by the plasmid system introduced in the bacterial cell. The gene was then over-expressed regardless of the growth phase of the culture and a glycosylated fraction was purified to homogeneity by lectin-immobilized chromatography assay. Unlike the high level expression of Dps in Salmonella cells, less than 1% of the recombinant protein was purified by affinity chromatography using jacalin column. Sequencing and mass spectrometry data confirmed the identity of the dps gene and the protein, respectively. In spite of the low level of purification of the jacalin-binding Dps, this work shall aid further investigations into the mechanism of Dps glycosylation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Exploring a literary gender: the chivalry novels This article deals with a series of aspects related to the thematic universe of the chivalry novels, focusing on the production of the literary work from a historical perspective. The text analyzes the advent and evolution of the genre chivalry novels, presents some central elements of its internal structure, concluding with some of the social functions of this kind of literature.
Resumo:
Recent studies found that isolates of Toxoplasma gondii from Brazil were biologically and genetically different from those in North America and Europe. However, to date only a small number of isolates have been analysed from different animal hosts in Brazil. In the present study DNA samples of 46 T. gondii isolates from cats in 11 counties in Sao Paulo state, Brazil were genetically characterised using 10 PCR restriction fragment length polymorphism markers including SAG1, SAG2, SAG3, STUB, GRA6, c22-8, c29-2, L358, PKI and Apico. An additional marker, CS3, that locates on chromosome VIIa and has previously been shown to be linked to acute virulence of T. gondii was also used to determine its association to virulence in mice. Genotyping of these 46 isolates revealed a high genetic diversity with 20 genotypes but no clonal Type I, II or III lineage was found. Two of the 46 isolates showed mixed infections. Combining genotyping data in this study with recent reported results from chickens, dogs and cats in Brazil (total 125 isolates) identified 48 genotypes and 26 of these genotypes had single isolates. Four of the 48 genotypes with multiple isolates identified from different hosts and locations are considered the common clonal lineages in Brazil. These lineages are designated as Types BrI, BrII, BrIII and BrIV. These results indicate that the T. gondii population in Brazil is highly diverse with a few successful clonal lineages expanded into wide geographical areas. In contrast to North America and Europe, where the Type II clonal lineage is overwhelmingly predominant, no Type II strain was identified from the 125 Brazil isolates. Analysis of mortality rates in infected mice indicates that Type BrI is highly virulent, Type BrIII is non-virulent, whilst Type BrII and BrIV lineages are intermediately virulent. In addition, allele types at the CS3 locus are strongly linked to mouse-virulence of the parasite. Thus, T. gondii has an epidemic population structure in Brazil and the major lineages have different biological traits. (C) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The tongue of birds fills the oral cavity and has a beak-like shape. Morphological studies of birds reveal a correlation between the structure of the tongue and the mechanism of food intake and the type of food. However, several studies have shown morphological differences among the tongues of bird species. The aim of this study was to analyze ostrich tongue morphology and ultrastructural features using scanning electron microscopy. Tongues from 12 adult ostriches were examined. Six tongues were sectioned sagittally into lateral and middle portions, fixed in 10% formaldehyde solution, and examined under light microscopy. The other six samples were sectioned longitudinally, and the dorsal and ventral surfaces were separated, Immersion-fixed In modified Karnovsky solution, and examined under scanning electron microscopy. The tongue surface of the ostrich was smooth, without lingual papillae, and covered by stratified non-keratinized epithelium. In the submucosal layer, mucous salivary glands were surrounded by connective-tissue capsules, with septa dividing the glands Into lobes. Numerous salivary gland ducts of different sizes and connective-tissue laminae dividing each opening could be clearly seen in scanning electron microscope Images. The ventral surface had fewer openings than the dorsal surface. In samples treated with NaOH, connective-tissue papillae from the dorsal region were oriented posteriorly.
Resumo:
Undernutrition can cause important functional and morphological alterations in the hematopoietic bone marrow (HBM). Degeneration of the HBM in malnourished individuals has been observed in the long bones, but none has been described in the cranial bones. Mandibular condyle fracture can lead to determine nutritional effects due to the high catabolism needed for the bone healing added to the difficulties of mastication. The aim of this study is to describe the histological aspect of HBM in the fractured mandibular condyle and in the temporal bone of malnourished rats. Thirty adult rats suffered unilateral mandibular condyle fracture and were divided into well-nourished (FG) and malnourished (MG) groups. In the MG the animals received a hypoproteic diet during the experiment. Histological sections of the temporomandibular joint were stained to visualize and quantify the HBM in this region at 24h, and 7, 15, 30, and 90 days post-fracture. At 24 hours, FG and MG showed hypocellularity and ischemic degeneration in the mandibular condyle and in the temporal bone. At 7 days, FG exhibited high cellularity in comparison with MG in the condyle; the temporal bone of both groups presented hypocellularity and degeneration. At 30 and 90 days, FG exhibited similar characteristics to those of the control; MG maintained the degeneration level mainly in the temporal bone. Malnutrition prejudices the regeneration of the HBM during a fracture healing in the temporomandibular joint. This fact contributes to a complete modification of the bone structure as well as to an impairment of the healing process.
Resumo:
Statement of problem. There are no established clinical procedures for bonding zirconia to tooth structure using resin cements. Purpose. The purpose of this study was to evaluate the influence of metal primers, resin cements, and aging on bonding to zirconia. Material and methods. Zirconia was treated with commercial primers developed for bonding to metal alloys (Metaltite, Metal Primer II, Alloy Primer or Totalbond). Non-primed specimens were considered as controls. One-hundred disk-shaped specimens (19 x 4 mm) were cemented to composite resin substrates using Panavia or RelyX Unicem (n=5). Microtensile bond strength specimens were tested after 48 hours and 5 months (150 days), and failure modes were classified as type 1 (between ceramic/cement), 2 (between composite resin/cement) or 3 (mixed). Data were analyzed by 3-way ANOVA and Multiple Comparison Tukey test (alpha=.05). Results. The interactions primer/luting system (P=.016) and luting system/storage time (P=.004) were statistically significant. The use of Alloy Primer significantly improved the bond strength of RelyX Unicem (P<.001), while for Panavia, none of the primers increased the bond strength compared to the control group. At 48 hours, Panavia had statistically higher bond strength (P=.004) than Unicem (13.9 +/- 4.4MPa and 10.2 +/- 6.6MPa, respectively). However, both luting systems presented decreasing, statistically similar; values after aging (Panavia: 3.6 +/- 2.2MPa; Unicem: 6.1 +/- 5.3MPa). At 48 hours, Alloy Primer/Unicem had the lowest incidence of type 1 failure (8%). After aging, all the groups showed a predominance of type 1 failures. Conclusions. The use of Alloy Primer improved bond strength between RelyX Unicem and zirconia. Though the initial values obtained with Panavia were significantly higher than RelyX Unicem, after aging, both luting agents presented statistically similar performances. (J Prosthet Dent 2011;105:296-303)
Resumo:
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Different monomer structures lead to different physical and mechanical properties for both the monomers and the polymers. The objective of this study was to determine the influence of the bisphenylglycidyl dimethacrylate (BisGMA) concentration (33, 50 or 66 mol%) and the co-monomer content [triethylene glycol dimethacrylate (TEGDMA), ethoxylated bisphenol-A dimethacrylate (BisEMA), or both in equal parts] on viscosity (eta), degree of conversion (DC), and flexural strength (FS). eta was measured using a viscometer, DC was obtained by Fourier transfer Raman (FT-Raman) spectroscopy, and FS was determined by three-point bending. At 50 and 66% BisGMA, increases in eta were observed following the partial and total substitution of TEGDMA by BisEMA. For 33% BisGMA, eta increased significantly only when no TEGDMA was present. The DC was influenced by BisGMA content and co-monomer type. Mixtures containing 66% BisGMA showed a lower DC compared with mixtures containing other concentrations of BisGMA. The BisEMA mixtures had a lower DC compared with the TEGDMA mixtures. The FS was influenced by co-monomer content only. BisEMA mixtures presented a statistically lower FS, followed by TEGDMA + BisEMA mixtures, and then by TEGDMA mixtures. Partial or total replacement of TEGDMA by BisEMA increased eta, which was associated with the observed decreases in DC and FS. Although the BisGMA content influenced the DC, it did not affect the FS results.
Resumo:
The influence of composite organic content on polymerization stress development remains unclear. It was hypothesized that stress was directly related to differences in degree of conversion, volumetric shrinkage, elastic modulus, and maximum rate of polymerization encountered in composites containing different BisGMA (bisphenylglycidyl dimethacrylate) concentrations and TEGDMA ( triethylene glycol dimethacrylate) and/or BisEMA ( ethoxylated bisphenol-A dimethacrylate) as co-monomers. Stress was determined in a tensilometer. Volumetric shrinkage was measured with a mercury dilatometer. Elastic modulus was obtained by flexural test. We used fragments of flexural specimens to determine degree of conversion by FT-Raman spectroscopy. Reaction rate was determined by differential scanning calorimetry. Composites with lower BisGMA content and those containing TEGDMA showed higher stress, conversion, shrinkage, and elastic modulus. Polymerization rate did not vary significantly, except for the lower value of the 66% TEGDMA composite. We used linear regressions to evaluate the association between polymerization stress and conversion (R-2 = 0.905), shrinkage ( R-2 = 0.825), and modulus ( R-2 = 0.623).
Resumo:
Purpose: To evaluate the effects of storage condition and duration on the resistance to fracture of different fiber post systems (and to morphologically assess the post structure before and after storage. Methods: Three types of fiber posts (DT Light Post, GC Post, FRC Postect Plus) were divided in different groups (n=12) according to the storage condition (dry at 37 degrees C; saline water at 37 degrees C; mineral oil at 37 degrees C and storage inside the roots of extracted human teeth immersed in saline water at 37 degrees C and duration (6, 12 months). A universal testing machine loading at a 90 degrees angle was employed for the three-point bending test. The test was carried out until fracture of the post. A 3-way ANOVA and Tukey`s test (alpha= 0.05) were used to compare the effect of the experimental factors on the fracture strength. Two posts of each group were observed before and after the storage using a scanning electron microscope. Results: Storage condition and post type had a significant effect on post fracture strength (P< 0.05). The interaction between these factors was significant (P< 0.05). Water storage significantly decreased the fracture strength, regardless of the post type and the storage duration. Storage inside roots, in oil, and at dry conditions did not significantly affect post fracture strength. SEM micrographs revealed voids between fibers and resin matrix for posts stored in water. Posts stored under the other conditions showed a compact matrix without porosities. (Am J Dent 2009;22:366-370).