961 resultados para fast sample preparation method
Resumo:
Introduction Polymerase chain reaction (PCR) may offer an alternative diagnostic option when clinical signs and symptoms suggest visceral leishmaniasis (VL) but microscopic scanning and serological tests provide negative results. PCR using urine is sensitive enough to diagnose human visceral leishmaniasis (VL). However, DNA quality is a crucial factor for successful amplification. Methods A comparative performance evaluation of DNA extraction methods from the urine of patients with VL using two commercially available extraction kits and two phenol-chloroform protocols was conducted to determine which method produces the highest quality DNA suitable for PCR amplification, as well as the most sensitive, fast and inexpensive method. All commercially available kits were able to shorten the duration of DNA extraction. Results With regard to detection limits, both phenol: chloroform extraction and the QIAamp DNA Mini Kit provided good results (0.1 pg of DNA) for the extraction of DNA from a parasite smaller than Leishmania (Leishmania) infantum (< 100fg of DNA). However, among 11 urine samples from subjects with VL, better performance was achieved with the phenol:chloroform method (8/11) relative to the QIAamp DNA Mini Kit (4/11), with a greater number of positive samples detected at a lower cost using PCR. Conclusion Our results demonstrate that phenol:chloroform with an ethanol precipitation prior to extraction is the most efficient method in terms of yield and cost, using urine as a non-invasive source of DNA and providing an alternative diagnostic method at a low cost.
Resumo:
The authors also acknowledge Centre for Textile Science and Technology (University of Minho) and FIBRENAMICS PLATFORMfor providing required conditions for this research. Sincere thanks are also due to Mr. Pedro Samuel Leite and Mr. Carlos Jesus for their kind help in sample preparation and testing.
Resumo:
Dissertação de mestrado em Geociências (área de especialização em Valorização de Recursos Geológicos)
Resumo:
Dissertação de mestrado em Técnicas de Caracterização e Análise Química
Resumo:
Projecte de recerca elaborat a partir d’una estada l’ Osservatorio Vesuviano (Nàpols, Italia) entre novembre del 2006 i març del 2007. Un dels objectius principals de l’estada ha estat conèixer la tècnica analítica Thermal Ionisation Mass Spectrometry (TIMS ) per l’anàlisi d’isòtops radiogènics (Sr i Nd). Aquesta estada ha permès aprendre tant la part de preparació de les mostres, com la part d’utilització i programació de l’instrument. Inicialment en el projecte es va programar l’anàlisi dels isòtops radiogènics en laves i xenòlits de l’illa de Gran Canaria (Illes Canàries) amb l’objectiu de modelar geoquímicament el mantell terrestre sota les illes Canàries. Finalment, i a part de les mostres inicials de Gran Canaria, es van incloure mostres del volcà Vesuvi per tal de concloure un projecte iniciat el 2003 amb el Professor Giovanni Orsi i la Professora Lucia Civetta. L’estudi dels isòtops radiogènics en contextes geodinàmics tant diferents ha permès comparar la variació dels isòtops radiogènics de Sr i Nd que existeix entre volcanisme d’ intraplaca (Illes Canàries) i volcanisme en zones convergents (Vesuvi).
Resumo:
An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.
Resumo:
A new metabolite profiling approach combined with an ultrarapid sample preparation procedure was used to study the temporal and spatial dynamics of the wound-induced accumulation of jasmonic acid (JA) and its oxygenated derivatives in Arabidopsis thaliana. In addition to well known jasmonates, including hydroxyjasmonates (HOJAs), jasmonoyl-isoleucine (JA-Ile), and its 12-hydroxy derivative (12-HOJA-Ile), a new wound-induced dicarboxyjasmonate, 12-carboxyjasmonoyl-l-isoleucine (12-HOOCJA-Ile) was discovered. HOJAs and 12-HOOCJA-Ile were enriched in the midveins of wounded leaves, strongly differentiating them from the other jasmonate metabolites studied. The polarity of these oxylipins at physiological pH correlated with their appearance in midveins. When the time points of accumulation of different jasmonates were determined, JA levels were found to increase within 2-5 min of wounding. Remarkably, these changes occurred throughout the plant and were not restricted to wounded leaves. The speed of the stimulus leading to JA accumulation in leaves distal to a wound is at least 3 cm/min. The data give new insights into the spatial and temporal accumulation of jasmonates and have implications in the understanding of long-distance wound signaling in plants.
Resumo:
Imaging mass spectrometry (IMS) is useful for visualizing the localization of phospholipids on biological tissue surfaces creating great opportunities for IMS in lipidomic investigations. With advancements in IMS of lipids, there is a demand for large-scale tissue studies necessitating stable, efficient and well-defined sample handling procedures. Our work within this article shows the effects of different storage conditions on the phospholipid composition of sectioned tissues from mouse organs. We have taken serial sections from mouse brain, kidney and liver thaw mounted unto ITO-coated glass slides and stored them under various conditions later analyzing them at fixed time points. A global decrease in phospholipid signal intensity is shown to occur and to be a function of time and temperature. Contrary to the global decrease, oxidized phospholipid and lysophospholipid species are found to increase within 2 h and 24 h, respectively, when mounted sections are kept at ambient room conditions. Imaging experiments reveal that degradation products increase globally across the tissue. Degradation is shown to be inhibited by cold temperatures, with sample integrity maintained up to a week after storage in −80 °C freezer under N2 atmosphere. Overall, the results demonstrate a timeline of the effects of lipid degradation specific to sectioned tissues and provide several lipid species which can serve as markers of degradation. Importantly, the timeline demonstrates oxidative sample degradation begins appearing within the normal timescale of IMS sample preparation of lipids (i.e. 1-2 h) and that long-term degradation is global. Taken together, these results strengthen the notion that standardized procedures are required for phospholipid IMS of large sample sets, or in studies where many serial sections are prepared together but analyzed over time such as in 3-D IMS reconstruction experiments.
Resumo:
In the International Olympic Committee (IOC) accredited laboratories, specific methods have been developed to detect anabolic steroids in athletes' urine. The technique of choice to achieve this is gas-chromatography coupled with mass spectrometry (GC-MS). In order to improve the efficiency of anti-doping programmes, the laboratories have defined new analytical strategies. The final sensitivity of the analytical procedure can be improved by choosing new technologies for use in detection, such as tandem mass spectrometry (MS-MS) or high resolution mass spectrometry (HRMS). A better sample preparation using immuno-affinity chromatography (IAC) is also a good tool for improving sensitivity. These techniques are suitable for the detection of synthetic anabolic steroids whose structure is not found naturally in the human body. The more and more evident use, on a large scale, of substances chemically similar to the endogenous steroids obliges both the laboratory and the sports authorities to use the steroid profile of the athlete in comparison with reference ranges from a population or with intraindividual reference values.
Resumo:
Full-field X-ray microscopy is a valuable tool for 3D observation of biological systems. In the soft X-ray domain organelles can be visualized in individual cells while hard X-ray microscopes excel in imaging of larger complex biological tissue. The field of view of these instruments is typically 10(3) times the spatial resolution. We exploit the assets of the hard X-ray sub-micrometer imaging and extend the standard approach by widening the effective field of view to match the size of the sample. We show that global tomography of biological systems exceeding several times the field of view is feasible also at the nanoscale with moderate radiation dose. We address the performance issues and limitations of the TOMCAT full-field microscope and more generally for Zernike phase contrast imaging. Two biologically relevant systems were investigated. The first being the largest known bacteria (Thiomargarita namibiensis), the second is a small myriapod species (Pauropoda sp.). Both examples illustrate the capacity of the unique, structured condenser based broad-band full-field microscope to access the 3D structural details of biological systems at the nanoscale while avoiding complicated sample preparation, or even keeping the sample environment close to the natural state.
Resumo:
C.E.R.A. (Continuous Erythropoietin Receptor Activator) is a new third-generation erythropoiesis-stimulating agent that has recently been linked with abuse in endurance sports. The anti-doping community rapidly reacted by releasing a high-throughput screening ELISA allowing the detection of C.E.R.A. doping in athletes' blood. In order to return adverse analytical findings, anti-doping laboratories, however, need, as far as possible, to confirm the presence of the drug in athletes' samples through orthogonal methods. This article focuses on the comparison of 2 proposed confirmation assays based on gel electrophoresis that were coupled with a new sample immunopurification method. IEF, the classical method used to target erythropoietin (EPO) and its recombinant analogues in athletes' samples, and SARKOSYL-PAGE were applied to the plasma samples of subjects having received a single injection of C.E.R.A. It was demonstrated that SARKOSYL-PAGE was at least 6 times more sensitive than IEF, with comparable specificity. A longer detection window coupled with easier interpretation criteria led us to recommend the use of SARKOSYL-PAGE to confirm C.E.R.A. presence in athletes' blood.
Resumo:
In this study, glyoxalated alkaline lignins with a non-volatile and non-toxic aldehyde, which can be obtained from several natural resources, namely glyoxal, were prepared and characterized for its use in wood adhesives. The preparation method consisted of the reaction of lignin with glyoxal under an alkaline medium. The influence of reaction conditions such as the molar ratio of sodium hydroxide-to-lignin and reaction time were studied relative to the properties of the prepared adducts. The analytical techniques used were FTIR and 1H-NMR spectroscopies, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Results from both the FTIR and 1H-NMR spectroscopies showed that the amount of introduced aliphatic hydroxyl groups onto the lignin molecule increased with increasing reaction time and reached a maximum value at 10 h, and after they began to decrease. The molecular weights remained unchanged until 10 h of reaction time, and then started to increase, possibly due to the repolymerization reactions. DSC analysis showed that the glass transition temperature (Tg) decreased with the introduction of glyoxal onto the lignin molecule due to the increase in free volume of the lignin molecules. TGA analysis showed that the thermal stability of glyoxalated lignin is not influenced and remained suitable for wood adhesives. Compared to the original lignin, the improved lignin is reactive and a suitable raw material for adhesive formula
Resumo:
A generic LC-MS approach for the absolute quantification of undigested peptides in plasma at mid-picomolar levels is described. Nine human peptides namely, brain natriuretic peptide (BNP), substance P (SubP), parathyroid hormone 1-34 (PTH), C-peptide, orexines A and B (Orex-A and -B), oxytocin (Oxy), gonadoliberin-1 (gonadothropin releasing-hormone or luteinizing hormone-releasing hormone, LHRH) and α-melanotropin (α-MSH) were targeted. Plasma samples were extracted via a 2-step procedure: protein precipitation using 1vol of acetonitrile followed by ultrafiltration of supernatants on membranes with a MW cut-off of 30 kDa. By applying a specific LC-MS setup, large volumes of filtrates (e.g., 2×750 μL) were injected and the peptides were trapped on a 1mm i.d.×10 mm length C8 column using a 10× on-line dilution. Then, the peptides were back-flushed and a second on-line dilution (2×) was applied during the transfer step. The refocalized peptides were resolved on a 0.3mm i.d. C18 analytical column. Extraction recovery, matrix effect and limits of detection were evaluated. Our comprehensive protocol demonstrates a simple and efficient sample preparation procedure followed by the analysis of peptides with limits of detection in the mid-picomolar range. This generic approach can be applied for the determination of most therapeutic peptides and possibly for endogenous peptides with latest state-of-the-art instruments.
Resumo:
Despite the recent advances in structural analysis of monoclonal antibodies with bottom-up, middle-down, and top-down mass spectrometry (MS), further improvements in analysis accuracy, depth, and speed are needed. The remaining challenges include quantitatively accurate assignment of post-translational modifications, reduction of artifacts introduced during sample preparation, increased sequence coverage per liquid chromatography (LC) MS experiment, and ability to extend the detailed characterization to simple antibody cocktails and more complex antibody mixtures. Here, we evaluate the recently introduced extended bottom-up proteomics (eBUP) approach based on proteolysis with secreted aspartic protease 9, Sap9, for analysis of monoclonal antibodies. Key findings of the Sap9-based proteomics analysis of a single antibody include: (i) extensive antibody sequence coverage with up to 100% for the light chain and up to 99-100% for the heavy chain in a single LC-MS run; (ii) connectivity of complementarity-determining regions (CDRs) via Sap9-produced large proteolytic peptides (3.4 kDa on average) containing up to two CDRs per peptide; (iii) reduced artifact introduction (e. g., deamidation) during proteolysis with Sap9 compared to conventional bottom-up proteomics workflows. The analysis of a mixture of six antibodies via Sap9-based eBUP produced comparable results. Due to the reasons specified above, Sap9-produced proteolytic peptides improve the identification confidence of antibodies from the mixtures compared to conventional bottom-up proteomics dealing with shorter proteolytic peptides.
Resumo:
In the last few years, there has been a growing focus on faster computational methods to support clinicians in planning stenting procedures. This study investigates the possibility of introducing computational approximations in modelling stent deployment in aneurysmatic cerebral vessels to achieve simulations compatible with the constraints of real clinical workflows. The release of a self-expandable stent in a simplified aneurysmatic vessel was modelled in four different initial positions. Six progressively simplified modelling approaches (based on Finite Element method and Fast Virtual Stenting – FVS) have been used. Comparing accuracy of the results, the final configuration of the stent is more affected by neglecting mechanical properties of materials (FVS) than by adopting 1D instead of 3D stent models. Nevertheless, the differencesshowed are acceptable compared to those achieved by considering different stent initial positions. Regarding computationalcosts, simulations involving 1D stent features are the only ones feasible in clinical context.