953 resultados para evaporation crystallization
Resumo:
BACKGROUND The development of metabolic alkalosis was described recently in patients with hypernatremia. However, the causes for this remain unknown. The current study serves to clarify whether metabolic alkalosis develops in vitro after removal of free water from plasma and whether this can be predicted by a mathematical model. MATERIALS AND METHODS Ten serum samples of healthy humans were dehydrated by 29 % by vacuum centrifugation corresponding to an increase of the contained concentrations by 41 %. Constant partial pressure of carbon dioxide at 40 mmHg was simulated by mathematical correction of pH [pH(40)]. Metabolic acid-base state was assessed by Gilfix' base excess subsets. Changes of acid-base state were predicted by the physical-chemical model according to Watson. RESULTS Evaporation increased serum sodium from 141 (140-142) to 200 (197-203) mmol/L, i.e., severe hypernatremia developed. Acid-base analyses before and after serum concentration showed metabolic alkalosis with alkalemia: pH(40): 7.43 (7.41 to 7.45) vs 7.53 (7.51 to 7.55), p = 0.0051; base excess: 1.9 (0.7 to 3.6) vs 10.0 (8.2 to 11.8), p = 0.0051; base excess of free water: 0.0 (- 0.2 to 0.3) vs 17.7 (16.8 to 18.6), p = 0.0051. The acidifying effects of evaporation, including hyperalbuminemic acidosis, were beneath the alkalinizing ones. Measured and predicted acid-base changes due to serum evaporation agreed well. CONCLUSIONS Evaporation of water from serum causes concentrational alkalosis in vitro, with good agreement between measured and predicted acid-base values. At least part of the metabolic alkalosis accompanying hypernatremia is independent of renal function.
Resumo:
Most organisms are able to synthesize vitamin C whereas humans are not. In order to contribute to the elucidation of the molecular working mechanism of vitamin C transport through biological membranes, we cloned, overexpressed, purified, functionally characterized, and 2D- and 3D-crystallized a bacterial protein (UraDp) with 29% of amino acid sequence identity to the human sodium-dependent vitamin C transporter 1 (SVCT1). Ligand-binding experiments by scintillation proximity assay revealed that uracil is a substrate preferably bound to UraDp. For structural analysis, we report on the production of tubular 2D crystals and present a first projection structure of UraDp from negatively stained tubes. On the other hand the successful growth of UraDp 3D crystals and their crystallographic analysis is described. These 3D crystals, which diffract X-rays to 4.2Å resolution, pave the way towards the high-resolution crystal structure of a bacterial homologue with high amino acid sequence identity to human SVCT1.
Resumo:
Recent geomorphological observations as well as chemical and thermodynamic studies demonstrate that liquid water should be stable today on the Martian surface at some times of the day. In Martian conditions, brines would be particularly more stable than pure water because salts can depress the freezing point and lower the evaporation rate of water. Despite this evidence, no clear spectral signature of liquid has been observed so far by the hyperspectral imaging spectrometers OMEGA and CRISM. However, past spectral analysis lacks a good characterization of brines׳ spectral signatures. This study thus aims to determine how liquid brines can be detected on Mars by spectroscopy. In this way, laboratory experiments were performed for reproducing hydration and dehydration cycles of various brines while measuring their spectral signatures. The resulting spectra first reveal a very similar spectral evolution for the various brine types and pure water, with the main difference observed at the end of the dehydration with the crystallization of various hydrated minerals from brines. The main characteristic of this spectral behavior is an important decoupling between the evolution of albedo and hydration bands depths. During most of the wetting/drying processes, spectra usually display a low albedo associated with shallow water absorption band depths. Strong water absorption band depth and high albedo are respectively only observed when the surface is very wet and when the surface is very dry. These experiments can thus explain why the currently active Martian features attributed to the action of a liquid are only associated with low albedo and very weak spectral signatures. Hydration experiments also reveal that deliquescence occurs easily even at low temperature and moderate soil water vapor pressure and could thus cause seasonal darkening on Mars. These experiments demonstrate that the absence of water absorptions in CRISM in the middle afternoon does not rule out water activity and suggest future spectral investigations to identify water on the Martian surface.
Resumo:
Monazite-bearing Alpine clefts located in the Sonnblick region of the eastern Tauern Window, Austria, are oriented perpendicular to the foliation and lineation. Ion probe (SIMS) Th–Pb and U–Pb dating of four cleft monazites yields crystallization ages of different growth domains and aggregate regions ranging from 18.99 ± 0.51 to 15.00 ± 0.51 Ma. The crystallization ages obtained are overlapping or slightly younger than zircon fission track ages but older than zircon (U–Th)/He cooling ages from the same area. This constrains cleft monazite crystallization in this area to *300–200 �C. LA-ICP-MS data of dated hydrothermal monazites indicate that in graphite-bearing, reduced host lithologies, cleft monazite is poor in As and has higher La/Yb values and U concentrations, whereas in oxidised host rocks opposite trends are observed. Monazites show negative Eu anomalies and variable La/Yb values ranging from 520 to 6050. The positive correlation between Ca and Sr concentration indicates dissolution of plagioclase or carbonates as the source of these elements. The data show that early exhumation and cleft formation in the Tauern is related to metamorphic dome formation caused by the collision of the Adriatic with the European plate and that monazite crystallization in the clefts occurred later. Our data also demonstrate that hydrothermal monazite ages offer great potential in helping to constrain the chronology of exhumation in collisional orogens.
Resumo:
Eosinophils are white blood cells that function in innate immunity and participate in the pathogenesis of various inflammatory and neoplastic disorders. Their secretory granules contain four cytotoxic proteins, including the eosinophil major basic protein (MBP-1). How MBP-1 toxicity is controlled within the eosinophil itself and activated upon extracellular release is unknown. Here we show how intragranular MBP-1 nanocrystals restrain toxicity, enabling its safe storage, and characterize them with an X-ray-free electron laser. Following eosinophil activation, MBP-1 toxicity is triggered by granule acidification, followed by extracellular aggregation, which mediates the damage to pathogens and host cells. Larger non-toxic amyloid plaques are also present in tissues of eosinophilic patients in a feedback mechanism that likely limits tissue damage under pathological conditions of MBP-1 oversecretion. Our results suggest that MBP-1 aggregation is important for innate immunity and immunopathology mediated by eosinophils and clarify how its polymorphic self-association pathways regulate toxicity intra- and extracellularly.
Resumo:
The bacterial phosphoenolpyruvate: sugar phosphotransferase system serves the combined uptake and phosphorylation of carbohydrates. This structurally and functionally complex system is composed of several conserved functional units that, through a cascade of phosphorylated intermediates, catalyze the transfer of the phosphate moiety from phosphoenolpyruvate to the substrate, which is bound to the integral membrane domain IIC. The wild-type glucose-specific IIC domain (wt-IIC(glc)) of Escherichia coli was cloned, overexpressed and purified for biochemical and functional characterization. Size-exclusion chromatography and scintillation-proximity binding assays showed that purified wt-IIC(glc) was homogenous and able to bind glucose. Crystallization was pursued following two different approaches: (i) reconstitution of wt-IIC(glc) into a lipid bilayer by detergent removal through dialysis, which yielded tubular 2D crystals, and (ii) vapor-diffusion crystallization of detergent-solubilized wt-IIC(glc), which yielded rhombohedral 3D crystals. Analysis of the 2D crystals by cryo-electron microscopy and the 3D crystals by X-ray diffraction indicated resolutions of better than 6Å and 4Å, respectively. Furthermore, a complete X-ray diffraction data set could be collected and processed to 3.93Å resolution. These 2D and 3D crystals of wt-IIC(glc) lay the foundation for the determination of the first structure of a bacterial glucose-specific IIC domain.
Resumo:
This research compares the methodological tools employed in NOS research, with analysis of what the comparison implies about the structure of nature of science knowledge. Descriptions of practicing teachers’ nature of science conceptions were compared based on data collected from forced choice responses, responses to a qualitative survey, and course writing samples. Participants’ understandings were scored differently on the Views of Nature of Science Questionnaire (VNOS) than the forced-choice measure, Scientific Thinking and Internet Learning Technologies (STILT). In addition, analysis of the writing samples and observations combined with interviews portrayed more sophisticated, but more variable, understandings of the nature of science than was evidenced by either the survey or the forced-choice measure. The differences between data collection measures included the degree to which they drew upon context bound or context general reasoning, the degree to which they required students to move beyond the simple intelligibility of their responses and allowed students to explore the fruitfulness of the constructs, as well as the degree to which they revealed the interconnection of participants NOS conceptions. In light of the different portrayals of a participants NOS conceptions yielded by these different measures, we call for the use of crystallization as a methodological referent in research.
Resumo:
The transition from magmatic crystallization to high-temperature metamorphism in deep magma chambers (or lenses) beneath spreading ridges has not been fully described. High-temperature microscopic veins found in olivine gabbros, recovered from Ocean Drilling Program Hole 735B on the Southwest Indian Ridge during Leg 176, yield information on the magmatic-hydrothermal transition beneath spreading ridges. The microscopic veins are composed of high-temperature minerals, (i.e., clinopyroxene, orthopyroxene, brown amphibole, and plagioclase). An important feature of these veins is the 'along-vein variation' in mineralogy, which is correlated with the magmatic minerals that they penetrate. Within grains of magmatic plagioclase, the veins are composed of less calcic plagioclase. In grains of olivine, the veins are composed of orthopyroxene + brown amphibole + plagioclase. In clinopyroxene grains, the veins consist of plagioclase + brown amphibole and are accompanied by an intergrowth of brown amphibole + orthopyroxene. The mode of occurrence of the veins cannot be explained if these veins were crystallized from silicate melts. Consequently, these veins and nearby intergrowths were most likely formed by the reaction of magmatic minerals with fluid phases under the conditions of low fluid/rock ratios. Very similar intergrowths of brown amphibole + orthopyroxene are observed in clinopyroxene grains with 'interfingering' textures. It is believed, in general, that the penetration of seawater does not predate the ductile deformation within Layer 3 gabbros of the slow-spreading ridges. If this is the case, the fluid responsible for the veins did not originate from seawater because the formation of the veins and the interfingering textures preceded ductile deformation and, perhaps, complete solidification of the gabbroic crystal mush. It has been proposed, based on fluid inclusion data, that the exsolution of fluid from the latest-stage magma took place at temperatures >700°C in the slow-spreading Mid-Atlantic Ridge at the Kane Fracture Zone (MARK) area. No obvious mineralogical evidence, however, has been found for these magmatic fluids. The calculated temperatures for the veins and nearby intergrowths found in Hole 735B gabbros are up to 1000°C, and these veins are the most plausible candidate for the mineralogical expression of the migrating magmatic fluids.