977 resultados para estrogen, prostate, androgens, aromatase, development, ERalpha, ERbeta
Resumo:
We previously showed that estrogen receptor (ER) mRNA is present in preimplantation mouse embryos. The apparent synthesis of ER mRNA by the blastocyst at the time of implantation when estrogen is required was of special interest. A demonstration of the presence of ER protein would support the idea that estrogen can act directly on the embryo. The mouse embryo at the blastocyst stage is differentiated into two cell types, the trophectoderm and the inner cell mass. To determine whether ER mRNA is translated into ER protein and its cell-specific distribution, immunocytochemical analyses were performed in mouse blastocysts. ER protein was detected in all cell types of the normal, dormant, or activated blastocyst. To trace the fate of ER in these cell types, immunocytochemistry was performed in implanting blastocysts and early egg cylinder stage embryos developed in culture. Again, ER was detected in all cells of the implanting blastocyst. At the early egg cylinder stage, continued expression of ER was observed in cells derived from the inner cell mass or the trophoblast. In trophoblast giant cells, ER was concentrated in small regions of the nucleus, possibly the nucleoli, which was similar to that observed in dormant and activated blastocysts. The embryonic expression of ER at such early stages in a broad array of cells suggests that ER may have a general role during early development.
Resumo:
Prostate cancer is the second leading cause of male cancer deaths in the United States. Yet, despite a large international effort, little is known about the molecular mechanisms that underlie this devastating disease. Prostate secretory epithelial cells and androgen-dependent prostate carcinomas undergo apoptosis in response to androgen deprivation and, furthermore, most prostate carcinomas become androgen independent and refractory to further therapeutic manipulations during disease progression. Definition of the genetic events that trigger apoptosis in the prostate could provide important insights into critical pathways in normal development as well as elucidate the perturbations of those key pathways in neoplastic transformation. We report the functional definition of a novel genetic locus within human chromosome 10pter-q11 that mediates both in vivo tumor suppression and in vitro apoptosis of prostatic adenocarcinoma cells. A defined fragment of human chromosome 10 was transferred via microcell fusion into a prostate adenocarcinoma cell line. Microcell hybrids containing only the region 10pter-q11 were suppressed for tumorigenicity following injection of microcell hybrids into nude mice. Furthermore, the complemented hybrids undergo programmed cell death in vitro via a mechanism that does not require nuclear localization of p53. These data functionally define a novel genetic locus, designated PAC1, for prostate adenocarcinoma 1, involved in tumor suppression of human prostate carcinoma and furthermore strongly suggest that the cell death pathway can be functionally restored in prostatic adenocarcinoma.
Resumo:
Le cancer de la prostate (CP) est le cancer le plus fréquemment diagnostiqué en Amérique du Nord et est au troisième rang en termes de létalité chez les hommes. Suite aux traitements de première ligne, 20 à 30% des patients diagnostiqués avec un cancer localisé auront une récidive biochimique de la maladie. La déplétion androgénique mène fréquemment au développement du stade de résistance à la castration (RC). Ce dernier est associé avec une augmentation de la morbidité (métastases osseuses) et de la mortalité avec une survie moyenne inférieure à deux ans. L’évolution du CP est très hétérogène dans la population et il n’existe actuellement aucun biomarqueur pronostique permettant d’identifier les patients à risque de récurrence biochimique, de métastases osseuses et de développement d’une résistance à la castration. De nombreuses études ont démontré que les cytokines inflammatoires IL-6 et IL-8 jouent un rôle dans la pathogénèse du CP, notamment dans le développement de la résistance à la castration. Par ailleurs, les niveaux sériques élevés de ces cytokines ont été associés à un mauvais pronostic. Précédemment, notre laboratoire a démontré in vitro que la protéine IKKε entraîne une augmentation de la sécrétion de ces cytokines dans les cellules du CP et qu’elle est exprimée davantage dans les tissus de cancers plus avancés. Le premier objectif du présent mémoire fut d’évaluer dans des tissus humains la corrélation d’IKKε, IL-6 et IL-8 avec des paramètres cliniques. Nos résultats soulignent le potentiel d’IKKε comme biomarqueur tissulaire pronostique de récurrence biochimique et de métastases osseuses. Nous n’avons trouvé aucune association entre IL-6/IL-8 et les paramètres cliniques inclus dans l’étude. Le second objectif de ce projet fut d’évaluer la coexpression de ces trois molécules dans l’épithélium du CP. Nos résultats confirment les observations in vitro en mettant en évidence une forte association entre l’expression d’IKKε, IL-6 et IL-8. Le troisième objectif fut d’évaluer la relation entre les niveaux sériques et tissulaires d’IL-6 et d’IL-8. Aucune relation significative n’a été établie, suggérant que les cytokines sériques ne sont pas uniquement d’origine prostatique. En conclusion, mon projet de maîtrise aura permis de préciser le potentiel d’IKKε comme biomarqueur tissulaire pronostique et de valider pour la première fois dans des tissus humains sa co-expression avec les cytokines IL-6 et IL-8, dont le rôle dans la pathogénèse de la maladie est bien établi. Une étude plus exhaustive des voies de signalisation d’IKKε reste d’intérêt pour élucider notamment les mécanismes par lesquels IKKε stimule la production de cytokines et par quels moyens cette protéine pourrait être impliquée dans le développement d’un état résistant à la castration.
Resumo:
Shipping list no.: 2000-0351-P.
Resumo:
The prostate-specific antigen-related serine protease gene, kallikrein 4 (KLK4), is expressed in the prostate and, more importantly, overexpressed in prostate cancer. Several KLK4 mRNA splice variants have been reported, but it is still not clear which of these is most relevant to prostate cancer. Here we report that, in addition to the full-length KLK4 (KLK4-254) transcript, the exon 1 deleted KLK4 transcripts, in particular, the 5'-truncated KLK4-205 transcript, is expressed in prostate cancer. Using V5/His6 and green fluorescent protein (GFP) carboxy terminal tagged expression constructs and immunocytochemical approaches, we found that hK4-254 is cytoplasmically localized, while the N-terminal truncated hK4-205 is in the nucleus of transfected PC-3 prostate cancer cells. At the protein level, using anti-hK4 peptide antibodies specific to different regions of hK4-254 (N-terminal and C-terminal), we also demonstrated that endogenous hK4-254 (detected with the N-terminal antibody) is more intensely stained in malignant cells than in benign prostate cells, and is secreted into seminal fluid. In contrast, for the endogenous nuclear-localized N-terminal truncated hK4-205 form, there was less difference in staining intensity between benign and cancer glands. Thus, KLK4-254/hK4-254 may have utility as an immunohistochemical marker for prostate cancer. Our studies also indicate that the expression levels of the truncated KLK4 transcripts, but not KLK4-254, are regulated by androgens in LNCaP cells. Thus, these data demonstrate that there are two major isoforms of hK4 (KLK4-254/hK4-254 and KLK4-205/hK4-205) expressed in prostate cancer with different regulatory and expression profiles that imply both secreted and novel nuclear roles.
Resumo:
Prostate cancer (CaP) patients with disseminated disease often suffer from severe cachexia, which contributes to mortality in advanced cancer. Human cachexia-associated protein (HCAP) was recently identified from a breast cancer library based on the available 20-amino acid sequence of proteolysis-inducing factor (PIF), which is a highly active cachectic factor isolated from mouse colon adenocarcinoma MAC16. Herein, we investigated the expression of HCAP in CaP and its potential involvement in CaP-associated cachexia. HCAP mRNA was detected in CaP cell lines, in primary CaP tissues and in its osseous metastases. In situ hybridization showed HCAP mRNA to be localized only in the epithelial cells in CaP tissues, in the metastatic foci in bone, liver and lymph node, but not in the stromal cells or in normal prostate tissues. HCAP protein was detected in 9 of 14 CaP metastases but not in normal prostate tissues from cadaveric donors or patients with organ-confined tumors. Our Western blot analysis revealed that HCAP was present in 9 of 19 urine specimens from cachectic CaP patients but not in 19 urine samples of noncachectic patients. HCAP mRNA and protein were also detected in LuCaP 35 and PC-3M xenografts from our cachectic animal models. Our results demonstrated that human CaP cells express HCAP and the expression of HCAP is associated with the progression of CaP and the development of CaP cachexia. © 2003 Wiley-Liss, Inc.
Resumo:
A major problem with breast cancer treatment is the prevalence of antiestrogen resistance, be it de novo or acquired after continued use. Many of the underlying mechanisms of antiestrogen resistance are not clear, although estrogen receptor-mediated actions have been identified as a pathway that is blocked by antiestrogens. Selective estrogen receptor modulators (SERMs), such as tamoxifen, are capable of producing reactive oxygen species (ROS) through metabolic activation, and these ROS, at high levels, can induce irreversible growth arrest that is similar to the growth arrest incurred by SERMs. This suggests that SERM-mediated growth arrest may also be through ROS accumulation. Breast cancer receiving long-term antiestrogen treatment appears to adapt to this increased, persistent level of ROS. This, in turn, leads to the disruption of reversible redox signaling that involves redox-sensitive phosphatases and protein kinases and transcription factors. This has downstream consequences for apoptosis, cell cycle progression, and cell metabolism. For this dissertation, we explored if altering the ROS formed by tamoxifen also alters sensitivity of the drug in resistant cells. We explored an association with a thioredoxin/Jab1/p27 pathway, and a possible role of dysregulation of thioredoxin-mediated redox regulation contributing to the development of antiestrogen resistance in breast cancer. We used standard laboratory techniques to perform proteomic assays that showed cell proliferation, protein concentrations, redox states, and protein-protein interactions. We found that increasing thioredoxin reductase levels, and thus increasing the amount of reduced thioredoxin, increased tamoxifen sensitivity in previously resistant cells, as well as altered estrogen and tamoxifen-induced ROS. We also found that decreasing levels of Jab1 protein also increased tamoxifen sensitivity, and that the downstream effects showed a decrease p27 phosphorylation in both cases. We conclude that the chronic use of tamoxifen can lead to an increase in ROS that alters cell signaling and causing cell growth in the presence of tamoxifen, and that this resistant cell growth can be reversed with an alteration to the thioredoxin/Jab1 pathway.
Resumo:
Breast cancer is a disease associated with excess exposures to estrogens. While the mode of cancer causation is unknown, others have shown that oxidative stress induced by prolonged exposure to estrogens mediates renal, liver, endometrial and mammary tumorigenesis though the mechanism(s) underling this process is unknown. In this study, we show that 4-hydroxyl 17β-estradiol (4-OHE2), a catechol metabolite of estrogen, induces mammary tumorigenesis in a redox dependent manner. We found that the mechanism of tumorigenesis involves redox activations of nuclear respiratory factor-1 (NRF1); a transcriptions factor associated with regulation of mitochondria biogenesis and oxidative phosphorylation (OXPHOS), as well as mediation of cell survival and growth of cells during periods of oxidative stress. Key findings from our study are as follows: (i) Prolonged treatments of normal mammary epithelial cells with 4-OHE2, increased the formation of intracellular reactive oxygen species (ROS). (ii) Estrogen-induced ROS activates redox sensitive transcription factors NRF1. (iii) 4-OHE2 through activation of serine-threonine kinase and histone acetyl transferase, phosphorylates and acetylate NRF1 respectively. (iv) Redox mediated epigenetic modifications of NRF1 facilitates mammary tumorigenesis and invasive phenotypes of breast cancer cells via modulations of genes involved in proliferation, growth and metastasis of exposed cells. (v) Animal engraftment of transformed clones formed invasive tumors. (vi) Treatment of cells or tumors with biological or chemical antioxidants, as well as silencing of NRF1 expressions, prevented 4-OHE2 induced mammary tumorigenesis and invasive phenotypes of MCF-10A cells. Based on these observations, we hypothesize that 4-OHE2 induced ROS epigenetically activate NRF1 through its phosphorylation and acylation. This, in turn, through NRF1-mediated transcriptional activation of the cell cycle genes, controls 4-OHE2 induced cell transformation and tumorigenesis.^
Resumo:
Background: Recent epidemiologic, genetic, and molecular studies suggest infection and inflammation initiate certain cancers, including cancers of the prostate. Over the past several years, our group has been studying how mycoplasmas could possibly initiate and propagate cancers of the prostate. Specifically, Mycoplasma hyorhinis encoded protein p37 was found to promote invasion of prostate cancer cells and cause changes in growth, morphology and gene expression of these cells to a more aggressive phenotype. Moreover, we found that chronic exposure of benign human prostate cells to M. hyorhinis resulted in significant phenotypic and karyotypic changes that ultimately resulted in the malignant transformation of the benign cells. In this study, we set out to investigate another potential link between mycoplasma and human prostate cancer. Methods: We report the incidence of men with prostate cancer and benign prostatic hyperplasia (BPH) being seropositive for M. hyorhinis. Antibodies to M. hyorhinis were surveyed by a novel indirect enzyme-linked immunosorbent assay (ELISA) in serum samples collected from men presenting to an outpatient Urology clinic for BPH (N = 105) or prostate cancer (N = 114) from 2006-2009. Results: A seropositive rate of 36% in men with BPH and 52% in men with prostate cancer was reported, thus leading us to speculate a possible connection between M. hyorhinis exposure with prostate cancer. Conclusions: These results further support a potential exacerbating role for mycoplasma in the development of prostate cancer.
Resumo:
Funding: The research presented in this manuscript was wholly funded by National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), https://www.nc3rs.org.uk/. ‘The Snail Assay as an Alternative to the Rodent Hershberger Assay for Detecting Androgens and Anti-androgens’ funding reference: G0900802/1 to SJ, EJR, CSJ, and LRN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Resumo:
Calcium (Ca2+) is a known important second messenger. Calcium/Calmodulin (CaM) dependent protein kinase kinase 2 (CaMKK2) is a crucial kinase in the calcium signaling cascade. Activated by Ca2+/CaM, CaMKK2 can phosphorylate other CaM kinases and AMP-activated protein kinase (AMPK) to regulate cell differentiation, energy balance, metabolism and inflammation. Outside of the brain, CaMKK2 can only be detected in hematopoietic stem cells and progenitors, and in the subsets of mature myeloid cells. CaMKK2 has been noted to facilitate tumor cell proliferation in prostate cancer, breast cancer, and hepatic cancer. However, whethter CaMKK2 impacts the tumor microenvironment especially in hematopoietic malignancies remains unknown. Due to the relevance of myeloid cells in tumor growth, we hypothesized that CaMKK2 has a critical role in the tumor microenvironment, and tested this hyopothesis in murine models of hematological and solid cancer malignancies.
We found that CaMKK2 ablation in the host suppressed the growth of E.G7 murine lymphoma, Vk*Myc myeloma and E0771 mammary cancer. The selective ablation of CaMKK2 in myeloid cells was sufficient to restrain tumor growth, of which could be reversed by CD8 cell depletion. In the lymphoma microenvironment, ablating CaMKK2 generated less myeloid-derived suppressor cells (MDSCs) in vitro and in vivo. Mechanistically, CaMKK2 deficient dendritic cells showed higher Major Histocompatibility Class II (MHC II) and costimulatory factor expression, higher chemokine and IL-12 secretion when stimulated by LPS, and have higher potent in stimulating T-cell activation. AMPK, an anti-inflammatory kinase, was found as the relevant downstream target of CaMKK2 in dendritic cells. Treatment with CaMKK2 selective inhibitor STO-609 efficiently suppressed E.G7 and E0771 tumor growth, and reshaped the tumor microenvironment by attracting more immunogenic myeloid cells and infiltrated T cells.
In conclusion, we demonstrate that CaMKK2 expressed in myeloid cells is an important checkpoint in tumor microenvironment. Ablating CaMKK2 suppresses lymphoma growth by promoting myeloid cells development thereby decreasing MDSCs while enhancing the anti-tumor immune response. CaMKK2 inhibition is an innovative strategy for cancer therapy through reprogramming the tumor microenvironment.
Resumo:
Increasing levels of tissue hypoxia have been reported as a natural feature of the aging prostate gland and may be a risk factor for the development of prostate cancer. In this study, we have used PwR-1E benign prostate epithelial cells and an equivalently aged hypoxia-adapted PwR-1E sub-line to identify phenotypic and epigenetic consequences of chronic hypoxia in prostate cells. We have identified a significantly altered cellular phenotype in response to chronic hypoxia as characterized by increased receptor-mediated apoptotic resistance, the induction of cellular senescence, increased invasion and the increased secretion of IL-1 beta, IL6, IL8 and TNFalpha cytokines. In association with these phenotypic changes and the absence of HIF-1 alpha protein expression, we have demonstrated significant increases in global levels of DNA methylation and H3K9 histone acetylation in these cells, concomitant with the increased expression of DNA methyltransferase DMNT3b and gene-specific changes in DNA methylation at key imprinting loci. In conclusion, we have demonstrated a genome-wide adjustment of DNA methylation and histone acetylation under chronic hypoxic conditions in the prostate. These epigenetic signatures may represent an additional mechanism to promote and maintain a hypoxic-adapted cellular phenotype with a potential role in tumour development.
Resumo:
INTRODUCTION: Development of a therapy for bone metastases is of paramount importance for castration-resistant prostate cancer (CRPC). The osteomimetic properties of CRPC confer a propensity to metastasize to osseous sites. Micro-ribonucleic acid (miRNA) is non-coding RNA that acts as a post-transcriptional regulator of multiple proteins and associated pathways. Therefore identification of miRNAs could reveal a valid third generation therapy for CRPC. Areas covered: miR34a has been found to play an integral role in the progression of prostate cancer, particularly in the regulation of metastatic genes involved in migration, intravasation, extravasation, bone attachment and bone homeostasis. The correlation between miR34a down-regulation and metastatic progression has generated substantial interest in this field. Expert opinion: Examination of the evidence reveals that miR34a is an ideal target for gene therapy for metastatic CRPC. We also conclude that future studies should focus on the effects of miR34a upregulation in CRPC with respect to migration, translocation to bone micro-environment and osteomimetic phenotype development. The success of miR34a as a therapeutic is reliant on the development of appropriate delivery systems and targeting to the bone micro-environment. In tandem with any therapeutic studies, biomarker serum levels should also be ascertained as an indicator of successful miR34a delivery.