984 resultados para enzyme mechanism
Resumo:
A mono-oxygenase catalysing the conversion of 2-ethyl-4-thioisonicotinamide (ethionamide) into its sulphoxide was purified from guinea-pig liver homogenates. The enzyme required stoicheiometric amounts of oxygen and NADPH for the sulphoxidation reaction. The purified protein is homogeneous by electrophoretic, antigenic and chromatographic criteria. The enzyme has mol.wt. 85000 and it contains 1g-atom of iron and 1mol of FAD per mol, but not cytochrome P-450. The enzyme shows maximal activity at pH7.4 in a number of different buffer systems and the Km values calculated for the substrate and NADPH are 6.5×10-5m and 2.8×10-5m respectively. The activation energy of the reaction was calculated to be 36kJ/mol. Under optimal conditions, the molecular activity of the enzyme (mol of substrate oxidized/min per mol of enzyme) is calculated to be 2.1. The oxygenase belongs to the class of general drug-metabolizing enzymes and it may act on different compounds which can undergo sulphoxidation. The mechanism of sulphoxidation was shown to be mediated by superoxide anions.
Resumo:
The cholesterol side-chain cleavage enzyme activity is decreased considerably at the mild stage of vitamin A deficiency in rat testes and ovaries and the decrease in activity becomes more pronounced with progress of deficiency. Supplementation of the deficient rats with retinyl acetate, but not retinoic acid, restores the enzyme activity to normal values. The cholesterol side-chain cleavage enzyme of adrenals is not affected by any of the above treatments.
Resumo:
The crystalline mung bean nucleotide pyrophosphatase was inhibited nonlinearly by AMP, one of the products of the reaction. The partially inactive enzyme was specifically reactivated by ADP, and V at maximal activation was the same as that of the native enzyme. ATP was a linear, noncompetitive inhibitor. The kinetic evidence suggested that ADP and ATP might not be reacting at the same site as AMP. The electrophoretic mobility of the enzyme was increased by AMP, whereas ADP and ATP were without effect. The enzyme was denatured on treatment with urea or guanidine hydrochloride. The renatured and the native enzyme had the same pH (9.4) and temperature (49 °C) optimum. The Km (0.2 mImage ) and V (3.2) of the native enzyme increased on renaturation to 1.8 mImage and 8.0, respectively. In addition, renaturation resulted in desensitization of the enzyme to inhibition by low concentrations of AMP. Renaturation did not affect the reactivation of the apoenzyme by Zn2+.
Resumo:
Aspartate transcarbamylase is purified from mung bean seedlings by a series of steps involving manganous sulphate treatment, ammonium sulphate fractionation, DEAE-cellulose chromatography, followed by a second ammonium sulphate fractionation and finally gel filtration on Sephadex-G 100. The enzyme is homogeneous on ultracentrifugation and on polyacrylamide gel electrophoresis. It functions optimally at 55°C. It has two pH optima, one at 8.0 and the other at 10.2. The enzyme follows Michaelis-Menten kinetics with l-aspartate as the variable substrate. However, it exhibits sigmoid saturation curves at both the pH optima when the concentration of carbamyl phosphate is varied. The enzyme is allosterically inhibited by UMP at both the pH optima. Increasing phosphorylation of the uridine nucleotide decreases the inhibitory effect. The enzyme is desensitized to inhibition by UMP on treatment with p-hydroxymercuribenzoate, gel electrophoresis indicating that the enzyme is dissociated by this treatment; the dissociated enzyme can be reassociated by treatment with 2-mercaptoethanol. The properties of the mung bean enzyme are compared with the enzyme from other sources.
Resumo:
The transformation of vaterite to calcite was investigated systematically. The transition temperature and the energetics of the transformation were determined from differential thermal curves. The variations of lattice constants and crystallite size, accompanying the transformation were studied by X-ray diffractometry. The kinetics of transformation were investigated in the temperature range 460–490°C. The kinetic data were analysed with the help of three separate solid-state models.
Resumo:
Acetone powders prepared from leaf extracts of Tecoma stans L. were found to catalyze the oxidation of catechol to 3,4,3',4'-tetrahydroxydiphenyl. Fractionation of the acetone powders obtained from Tecoma leaves with acetone, negative adsorption of the acetone fraction with tricalcium phosphate gel, and chromatography of the gel supernatant on DEAE-Sephadex yielded a 68-fold purified enzyme with 66% recovery. The enzyme had an optimum pH around 7.2. It showed a temperature optimum of 30° and the Km for catechol was determined as 2 x 10-4 m. The purified enzyme moved as a single band on polyacrylamide gel electrophoresis. Its activity was found to be partially stimulated by Mg2+. The reaction was not inhibited by o-phenanthroline and agr,agr'-dipyridyl. The purified enzyme was highly insensitive to a range of copper-chelating agents. It was not affected appreciably by thiol inhibitors. The reaction was found to be suppressed to a considerable extent by reducing agents like GSH, cysteine, cysteamine, and ascorbic acid. The purified enzyme was remarkably specific for catechol. Catalase affected neither the enzyme activity nor the time course of the reaction. Hydrogen peroxide was not formed as a product of the reaction.
Resumo:
Breast cancer is the most common cancer in women in Western countries. In the early stages of development most breast cancers are hormone-dependent, and estrogens, especially estradiol, have a pivotal role in their development and progression. One approach to the treatment of hormone-dependent breast cancers is to block the formation of the active estrogens by inhibiting the action of the steroid metabolising enzymes. 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is a key enzyme in the biosynthesis of estradiol, the most potent female sex hormone. The 17beta-HSD1 enzyme catalyses the final step and converts estrone into the biologically active estradiol. Blocking 17beta-HSD1 activity with a specific enzyme inhibitor could provide a means to reduce circulating and tumour estradiol levels and thus promote tumour regression. In recent years 17beta-HSD1 has been recognised as an important drug target. Some inhibitors of 17beta-HSD1 have been reported, however, there are no inhibitors on the market nor have clinical trials been announced. The majority of known 17beta-HSD1 inhibitors are based on steroidal structures, while relatively little has been reported on non-steroidal inhibitors. As compared with 17beta-HSD1 inhibitors based on steroidal structures, non-steroidal compounds could have advantages of synthetic accessibility, drug-likeness, selectivity and non-estrogenicity. This study describes the synthesis of large group of novel 17beta-HSD1 inhibitors based on a non-steroidal thieno[2,3-d]pyrimidin-4(3H)-one core. An efficient synthesis route was developed for the lead compound and subsequently employed in the synthesis of thieno[2,3-d]pyrimidin-4(3H)-one based molecule library. The biological activities and binding of these inhibitors to 17beta-HSD1 and, finally, the quantitative structure activity relationship (QSAR) model are also reported. In this study, several potent and selective 17beta-HSD1 inhibitors without estrogenic activity were identified. This establishment of a novel class of inhibitors is a progressive achievement in 17beta-HSD1 inhibitor development. Furthermore, the 3D-QSAR model, constructed on the basis of this study, offers a powerful tool for future 17beta-HSD1 inhibitor development. As part of the fundamental science underpinning this research, the chemical reactivity of fused (di)cycloalkeno thieno[2,3-d]pyrimidin-4(3H)-ones with electrophilic reagents, i.e. Vilsmeier reagent and dimethylformamide dimethylacetal, was investigated. These findings resulted in a revision of the reaction mechanism of Vilsmeier haloformylation and further contributed to understanding the chemical reactivity of this compound class. This study revealed that the reactivity is dependent upon a stereoelectronic effect arising from different ring conformations.
Resumo:
Mycobacterium tuberculosis H37Rv possesses an enzyme (referred to as ‘Y enzyme’) which catalyses in the presence of INH and NAD, the formation of a product, which turns yellow on acidification. The requirements for the reaction, such as enzyme concentration, INH concentration, etc., have been standardized. The substrate specificity of the enzyme with respect to INH and NAD has been determined. The reaction is specific for the INH-sensitive strain and is totally absent in INH-resistant strains. Furthermore, the ‘Y enzyme’ shows some characteristic features of a peroxidase in its requirement for oxygen and sensitivity to inhibition by various reagents. The requirements of this enzyme which is involved in the action of isoniazid inM. tuberculosis H37Rv is described for the first time.
Resumo:
It is shown that the effect of adsorption of inert molecules on electrode reaction rates is completely accounted for, by introducing into the rate equation, adsorption-induced changes in both the effective electrode area as well as in the electrostatic potential at the reaction site with an additional term for the noncoulombic interaction between the reactant and the adsorbate. The electrostatic potential at the reaction site due to the adsorbed layer is calculated using a model of discretely-distributed molecules in parallel orientation when adsorbed on the electrode with an allowance for thermal agitation. The resulting expression, which is valid for the limiting case of low coverages, is used to predict the types of molecular surfactants that are most likely to be useful for acceleration and inhibition of electrode reactions.
Resumo:
Vapour phase oxidation of anthracene over cobalt molybdate catalyst was investigated in an isothermal flow reactor in the temperature range of 280—340°C. Fifteen different models based on redox, Langmuir—Hinshelwood and Rideal mechanisms were tested in order to elucidate the mechanism of the above reaction. These models were compared on the basis of three criteria and were finally discriminated employing the non-intrinsic parameter method. Two-stage redox mechanism was found to explain the data satisfactorily.
Resumo:
The crystalline mung bean nucleotide pyrophosphatase was inhibited nonlinearly by AMP, one of the products of the reaction. The partially inactive enzyme was specifically reactivated by ADP, and V at maximal activation was the same as that of the native enzyme. ATP was a linear, noncompetitive inhibitor. The kinetic evidence suggested that ADP and ATP might not be reacting at the same site as AMP. The electrophoretic mobility of the enzyme was increased by AMP, whereas ADP and ATP were without effect. The enzyme was denatured on treatment with urea or guanidine hydrochloride. The renatured and the native enzyme had the same pH (9.4) and temperature (49 °C) optimum. The Km (0.2 m ) and V (3.2) of the native enzyme increased on renaturation to 1.8 m and 8.0, respectively. In addition, renaturation resulted in desensitization of the enzyme to inhibition by low concentrations of AMP. Renaturation did not affect the reactivation of the apoenzyme by Zn2+.
Resumo:
Aspartate transcarbamylase is purified from mung bean seedlings by a series of steps involving manganous sulphate treatment, ammonium sulphate fractionation, DEAE-cellulose chromatography, followed by a second ammonium sulphate fractionation and finally gel filtration on Sephadex-G 100. The enzyme is homogeneous on ultracentrifugation and on polyacrylamide gel electrophoresis. It functions optimally at 55°C. It has two pH optima, one at 8.0 and the other at 10.2. The enzyme follows Michaelis-Menten kinetics with l-aspartate as the variable substrate. However, it exhibits sigmoid saturation curves at both the pH optima when the concentration of carbamyl phosphate is varied. The enzyme is allosterically inhibited by UMP at both the pH optima. Increasing phosphorylation of the uridine nucleotide decreases the inhibitory effect. The enzyme is desensitized to inhibition by UMP on treatment with p-hydroxymercuribenzoate, gel electrophoresis indicating that the enzyme is dissociated by this treatment; the dissociated enzyme can be reassociated by treatment with 2-mercaptoethanol. The properties of the mung bean enzyme are compared with the enzyme from other sources.
Resumo:
The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 μg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 μg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.