996 resultados para engineering workshops
Resumo:
Providing mobility corridors for communities, enabling freight networks to transport goods and services, and a pathway for emergency services and disaster relief operations, roads are a vital component of our societal system. In the coming decades, a number of modern issues will face road agencies as a result of climate change, resource scarcity and energy related challenges that will have implications for society. To date, these issues have been discussed on a case by case basis, leading to a fragmented approach by state and federal agencies in considering the future of roads – with potentially significant cost and risk implications. Within this context, this paper summarises part of a research project undertaken within the ‘Greening the Built Environment’ program of the Sustainable Built Environment National Research Centre (SBEnrc, Australia), which identified key factors or ‘trends’ affecting the future of roads and key strategies to ensure that road agencies can continue to deliver road infrastructure that meets societal needs in an environmentally appropriate manner. The research was conducted over two years, including a review of academic and state agency literature, four stakeholder workshops in Western Australia and Queensland, and industry consultation. The project was supported financially and through peer review and contribution, by Main Roads Western Australia, QLD Department of Transport and Main Roads, Parsons Brinckerhoff, John Holland Group, and the Australian Green Infrastructure Council (AGIC). The project highlighted several potential trends that are expected to affect road agencies in the future, including predicted resource and materials shortages, increases in energy and natural resources prices, increased costs related to greenhouse gas emissions, changing use and expectations of roads, and changes in the frequency and intensity of weather events. Exploring the implications of these potential futures, the study then developed a number of strategies in order to prepare transport agencies for the associated risks that such trends may present. An unintended outcome of the project was the development of a process for enquiring into future scenarios, which will be explored further in Stage 2 of the project (2013-2014). The study concluded that regardless of the type and scale of response by the agency, strategies must be holistic in approach, and remain dynamic and flexible.
Resumo:
Today, many sectors across society are recognising the need to swiftly reduce their growing energy demand, as well as meeting remaining demand with low emissions options. A key ingredient to addressing such issues is equipping professionals – in particular engineers – with emerging energy efficiency knowledge and skills. This paper responds to an identified engineering education gap in Australia, by investigating options to increase energy efficiency content for both undergraduate and postgraduate engineers. The authors summarise the findings of the multi-stage methodology funded by the National Framework for Energy Efficiency (2008-2009), highlighting identified key barriers and benefits to such curriculum renewal. The findings are intended for use by engineering departments, accreditation agencies, professional bodies and government, to identify opportunities for moving forward based on rigorous research, and then to strategically plan the transition. This process, focused on energy efficiency, may also provide valuable parallels for a range of sustainable engineering related topics.
Resumo:
BACKGROUND There is a growing volume of open source ‘education material’ on energy efficiency now available however the Australian government has identified a need to increase the use of such materials in undergraduate engineering education. Furthermore, there is a reported need to rapidly equip engineering graduates with the capabilities in conducting energy efficiency assessments, to improve energy performance across major sectors of the economy. In January 2013, building on several years of preparatory action-research initiatives, the former Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education (DIICCSRTE) offered $600,000 to develop resources for energy efficiency related graduate attributes, targeting Engineers Australia college disciplines, accreditation requirements and opportunities to address such requirements. PURPOSE This paper discusses a $430,000 successful bid by a university consortium led by QUT and including RMIT, UA, UOW, and VU, to design and pilot several innovative, targeted open-source resources for curriculum renewal related to energy efficiency assessments, in Australian engineering programs (2013-2014), including ‘flat-pack’, ‘media-bites’, ‘virtual reality’ and ‘deep dive’ case study initiatives. DESIGN/ METHOD The paper draws on literature review and lessons learned by the consortium partners in resource development over the last several years to discuss methods for selecting key graduate attributes and providing targeted resources, supporting materials, and innovative delivery options to assist universities deliver knowledge and skills to develop such attributes. This includes strategic industry and key stakeholders engagement. The paper also discusses processes for piloting, validating, peer reviewing, and refining these resources using a rigorous and repeatable approach to engaging with academic and industry colleagues. RESULTS The paper provides an example of innovation in resource development through an engagement strategy that takes advantage of existing networks, initiatives, and funding arrangements, while informing program accreditation requirements, to produce a cost-effective plan for rapid integration of energy efficiency within education. By the conference, stakeholder workshops will be complete. Resources will be in the process of being drafted, building on findings from the stakeholder engagement workshops. Reporting on this project “in progress” provides a significant opportunity to share lessons learned and take on board feedback and input. CONCLUSIONS This paper provides a useful reference document for others considering significant resource development in a consortium approach, summarising benefits and challenges. The paper also provides a basis for documenting the second half of the project, which comprises piloting resources and producing a ‘good practice guide’ for energy efficiency related curriculum renewal.
Resumo:
Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.
Resumo:
New technical and procedural interventions are less likely to be adopted in industry, unless they are smoothly integrated into the existing practices of professionals. In this paper, we provide a case study of the use of ethnographic methods for studying software bug-fixing activities at an industrial engineering conglomerate. We aimed at getting an in-depth understanding of software developers' everyday practices in bug-fixing related projects and in turn inform the design of novel productivity tools. The use of ethnography has allowed us to look at the social side of software maintenance practices. In this paper, we highlight: 1) organizational issues that influence bug-fixing activities; 2) social role of bug tracking systems, and; 3) social issues specific to different phases of bug-fixing activities.
Resumo:
The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteo- conductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineer- ing and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts.
Resumo:
Nowadays, process management systems (PMSs) are widely used in many business scenarios, e.g. by government agencies, by insurance companies, and by banks. Despite this widespread usage, the typical application of such systems is predominantly in the context of static scenarios, instead of pervasive and highly dynamic scenarios. Nevertheless, pervasive and highly dynamic scenarios could also benefit from the use of PMSs.
Resumo:
Since the late 1980s there have been increasing calls around the world for embedding sustainability content throughout engineering curricula, particularly over the past decade. However in general there has been little by way of strategic or systematic integration within programs offered by higher education institutions(HEIs). Responding to a growing awareness towards the issues surrounding sustainability, a number of professional engineering institutions (PEIs) internationally have placed increasing emphasis on policies and initiatives relating to the role of engineering in addressing 21st Century challenges. This has resulted in some consideration towards integrating sustainable development into engineering curricula as envisaged by accreditation guidelines. This paper provides a global overview of such accreditation developments, highlighting emerging sustainability competencies (or ‘graduate attributes’) and places these in the context of relevant PEI declarations, initiatives, policies, codes of ethics and guideline publications. The paper concludes by calling for urgent action by PEIs, including strategic accreditation initiatives that promote timely curriculum renewal towards EESD.
Resumo:
This paper presents the results of a qualitative action-research inquiry into how a highly diverse cohort of post-graduate students could develop significant capacity in sustainable development within a single unit (course), in this case a compulsory component of four built environment masters programs. The method comprised applying threshold learning theory within the technical discipline of sustainable development, to transform student understanding of sustainable business practice in the built environment. This involved identifying a number of key threshold concepts, which once learned would provide a pathway to having a transformational learning experience. Curriculum was then revised, to focus on stepping through these targeted concepts using a scaffolded, problem-based-learning approach. Challenges included a large class size of 120 students, a majority of international students, and a wide span of disciplinary backgrounds across the spectrum of built environment professionals. Five ‘key’ threshold learning concepts were identified and the renewed curriculum was piloted in Semester 2 of 2011. The paper presents details of the study and findings from a mixed-method evaluation approach through the semester. The outcomes of this study will be used to inform further review of the course in 2012, including further consideration of the threshold concepts. In future, it is anticipated that this case study will inform a framework for rapidly embedding sustainability within curriculum.
Resumo:
Dynamics is an essential core engineering subject. It includes high level mathematical and theoretical contents, and basic concepts which are abstract in nature. Hence, Dynamics is considered as one of the hardest subjects in the engineering discipline. To assist our students in learning this subject, we have conducted a Teaching & Learning project to study ways and methods to effectively teach Dynamics based on visualization techniques. The research project adopts the five basic steps of Action Learning Cycle. It is found that visualization technique is a powerful tool for students learning Dynamics and helps to break the barrier of students who perceived Dynamics as a hard subject.
Resumo:
Process models are usually depicted as directed graphs, with nodes representing activities and directed edges control flow. While structured processes with pre-defined control flow have been studied in detail, flexible processes including ad-hoc activities need further investigation. This paper presents flexible process graph, a novel approach to model processes in the context of dynamic environment and adaptive process participants’ behavior. The approach allows defining execution constraints, which are more restrictive than traditional ad-hoc processes and less restrictive than traditional control flow, thereby balancing structured control flow with unstructured ad-hoc activities. Flexible process graph focuses on what can be done to perform a process. Process participants’ routing decisions are based on the current process state. As a formal grounding, the approach uses hypergraphs, where each edge can associate any number of nodes. Hypergraphs are used to define execution semantics of processes formally. We provide a process scenario to motivate and illustrate the approach.
Resumo:
In recent years, interest in tissue engineering and its solutions has increased considerably. In particular, scaffolds have become fundamental tools in bone graft substitution and are used in combination with a variety of bio-agents. However, a long-standing problem in the use of these conventional scaffolds lies in the impossibility of re-loading the scaffold with the bio-agents after implantation. This work introduces the magnetic scaffold as a conceptually new solution. The magnetic scaffold is able, via magnetic driving, to attract and take up in vivo growth factors, stem cells or other bio-agents bound to magnetic particles. The authors succeeded in developing a simple and inexpensive technique able to transform standard commercial scaffolds made of hydroxyapatite and collagen in magnetic scaffolds. This innovative process involves dip-coating of the scaffolds in aqueous ferrofluids containing iron oxide nanoparticles coated with various biopolymers. After dip-coating, the nanoparticles are integrated into the structure of the scaffolds, providing the latter with magnetization values as high as 15 emu g�1 at 10 kOe. These values are suitable for generating magnetic gradients, enabling magnetic guiding in the vicinity and inside the scaffold. The magnetic scaffolds do not suffer from any structural damage during the process, maintaining their specific porosity and shape. Moreover, they do not release magnetic particles under a constant flow of simulated body fluids over a period of 8 days. Finally, preliminary studies indicate the ability of the magnetic scaffolds to support adhesion and proliferation of human bone marrow stem cells in vitro. Hence, this new type of scaffold is a valuable candidate for tissue engineering applications, featuring a novel magnetic guiding option.
Resumo:
Tissue Engineering is a promising emerging field that studies the intrinsic regenerative potential of the human body and uses it to restore functionality of damaged organs or tissues unable of self-healing due to illness or ageing. In order to achieve regeneration using Tissue Engineering strategies, it is first necessary to study the properties of the native tissue and determine the cause of tissue failure; second, to identify an optimum population of cells capable of restoring its functionality; and third, to design and manufacture a cellular microenvironment in which those specific cells are directed towards the desired cellular functions. The design of the artificial cellular niche has a tremendous importance, because cells will feel and respond to both its biochemical and biophysical properties very differently. In particular, the artificial niche will act as a physical scaffold for the cells, allowing their three-dimensional spatial organization; also, it will provide mechanical stability to the artificial construct; and finally, it will supply biochemical and mechanical cues to control cellular growth, migration, differentiation and synthesis of natural extracellular matrix. During the last decades, many scientists have made great contributions to the field of Tissue Engineering. Even though this research has frequently been accompanied by vast investments during extended periods of time, yet too often these efforts have not been enough to translate the advances into new clinical therapies. More and more scientists in this field are aware of the need of rational experimental designs before carrying out complex, expensive and time-consuming in vitro and in vivo trials. This review highlights the importance of computer modeling and novel biofabrication techniques as critical key players for a rational design of artificial cellular niches in Tissue Engineering.
Resumo:
Science, technology, engineering and mathematics (STEM) has become an educational package emerging throughout the world (e.g. UK, China, US & Australia). Although science, technology and mathematics are taught in schools and engineering education occurs in universities, there appear to be few if any explicit engineering education programs in primary and junior secondary schools. A stronger inclusion of engineering education at these levels could assist students to make informed decisions about career opportunities in STEM-related fields. This paper suggests how engineering education can be integrated with other key learning areas such as English, mathematics, science, history and geography within the new Australian Curriculum.
Resumo:
Changes in the construction sector are creating opportunities in research to maximise the benefits of those changes and to continue the exciting developments in improved people skills, new processes and developing technologies. Many research centres around the world are investigating aspects of the current changes to drive their particular expertise forward. However, the CIB Integrated Design and Delivery Solutions (IDDS) priority research theme takes a higher-level view of the changes and then focuses down on a prioritised set of research targets. These targets have been investigated, re-focussed and validated over a period of four years through many workshops, conferences and meetings by a wide ranging group of representatives from approximately 90 industry and research organisations. The outcomes of such research, once put into practice should be significantly shortened timespans from conception of need to occupation of new or revised structures. As time is money, the owners will get their investments into productive use sooner, which means a shorter payback time. In addition, there will inevitably be a reduction in construction costs as productivity increases. The improvements in reliable delivery and improved quality currently being seen in relatively simplistic use of Building information Modelling (BIM) (compared to full IDDS) will inevitably continue its on-going trajectory of improvement. We should also consider the wider economic contribution to society that will stem from such improvements and, finally, and by no means unimportantly, the reliable modelling and delivery of sustainability at both the building and estate/ area scale will significantly improve carbon footprints and other sustainable outcomes. Whilst there are huge opportunities for early adopters, the primary risk will be the expansion of the gap between those working in this way and those who are not so advanced or who even refuse to progress . The opportunities to address the significant and widely varying wastes within the structure of the construction sector and within and across projects are huge and timely and industry is encouraged to become involved.