944 resultados para end-to-end testing, javascript, application web, single-page application
Resumo:
Open web steel joists are designed in the United States following the governing specification published by the Steel Joist Institute. For compression members in joists, this specification employs an effective length factor, or K-factor, in confirming their adequacy. In most cases, these K-factors have been conservatively assumed equal to 1.0 for compression web members, regardless of the fact that intuition and limited experimental work indicate that smaller values could be justified. Given that smaller K-factors could result in more economical designs without a loss in safety, the research presented in this thesis aims to suggest procedures for obtaining more rational values. Three different methods for computing in-plane and out-of-plane K-factors are investigated, including (1) a hand calculation method based on the use of alignment charts, (2) computational critical load (eigenvalue) analyses using uniformly distributed loads, and (3) computational analyses using a compressive strain approach. The latter method is novel and allows for computing the individual buckling load of a specific member within a system, such as a joist. Four different joist configurations are investigated, including an 18K3, 28K10, and two variations of a 32LH06. Based on these methods and the very limited number of joists studied, it appears promising that in-plane and out-of-plane K-factors of 0.75 and 0.85, respectively, could be used in computing the flexural buckling strength of web members in routine steel joist design. Recommendations for future work, which include systematically investigating a wider range of joist configurations and connection restraint, are provided.
Resumo:
Context-Daytime sleepiness in kidney transplant recipients has emerged as a potential predictor of impaired adherence to the immunosuppressive medication regimen. Thus there is a need to assess daytime sleepiness in clinical practice and transplant registries.Objective-To evaluate the validity of a single-item measure of daytime sleepiness integrated in the Swiss Transplant Cohort Study (STCS), using the American Educational Research Association framework.Methods-Using a cross-sectional design, we enrolled a convenience sample of 926 home-dwelling kidney transplant recipients (median age, 59.69 years; 25%-75% quartile [Q25-Q75], 50.27-59.69), 63% men; median time since transplant 9.42 years (Q25-Q75, 4.93-15.85). Daytime sleepiness was assessed by using a single item from the STCS and the 8 items of the validated Epworth Sleepiness Scale. Receiver operating characteristic curve analysis was used to determine the cutoff for the STCS daytime sleepiness item against the Epworth Sleepiness Scale score.Results-Based on the receiver operating characteristic curve analysis, a score greater than 4 on the STCS daytime sleepiness item is recommended to detect daytime sleepiness. Content validity was high as all expert reviews were unanimous. Concurrent validity was moderate (Spearman ϱ, 0.531; P< .001) and convergent validity with depression and poor sleep quality although low, was significant (ϱ, 0.235; P<.001 and ϱ, 0.318, P=.002, respectively). For the group difference validity: kidney transplant recipients with moderate, severe, and extremely severe depressive symptom scores had 3.4, 4.3, and 5.9 times higher odds of having daytime sleepiness, respectively, as compared with recipients without depressive symptoms.Conclusion-The accumulated evidence provided evidence for the validity of the STCS daytime sleepiness item as a simple screening scale for daytime sleepiness.
Resumo:
Quantifying the health effects associated with simultaneous exposure to many air pollutants is now a research priority of the US EPA. Bayesian hierarchical models (BHM) have been extensively used in multisite time series studies of air pollution and health to estimate health effects of a single pollutant adjusted for potential confounding of other pollutants and other time-varying factors. However, when the scientific goal is to estimate the impacts of many pollutants jointly, a straightforward application of BHM is challenged by the need to specify a random-effect distribution on a high-dimensional vector of nuisance parameters, which often do not have an easy interpretation. In this paper we introduce a new BHM formulation, which we call "reduced BHM", aimed at analyzing clustered data sets in the presence of a large number of random effects that are not of primary scientific interest. At the first stage of the reduced BHM, we calculate the integrated likelihood of the parameter of interest (e.g. excess number of deaths attributed to simultaneous exposure to high levels of many pollutants). At the second stage, we specify a flexible random-effect distribution directly on the parameter of interest. The reduced BHM overcomes many of the challenges in the specification and implementation of full BHM in the context of a large number of nuisance parameters. In simulation studies we show that the reduced BHM performs comparably to the full BHM in many scenarios, and even performs better in some cases. Methods are applied to estimate location-specific and overall relative risks of cardiovascular hospital admissions associated with simultaneous exposure to elevated levels of particulate matter and ozone in 51 US counties during the period 1999-2005.
Resumo:
The Michigan Basin is located in the upper Midwest region of the United States and is centered geographically over the Lower Peninsula of Michigan. It is filled primarily with Paleozoic carbonates and clastics, overlying Precambrian basement rocks and covered by Pleistocene glacial drift. In Michigan, more than 46,000 wells have been drilled in the basin, many producing significant quantities of oil and gas since the 1920s in addition to providing a wealth of data for subsurface visualization. Well log tomography, formerly log-curve amplitude slicing, is a visualization method recently developed at Michigan Technological University to correlate subsurface data by utilizing the high vertical resolution of well log curves. The well log tomography method was first successfully applied to the Middle Devonian Traverse Group within the Michigan Basin using gamma ray log curves. The purpose of this study is to prepare a digital data set for the Middle Devonian Dundee and Rogers City Limestones, apply the well log tomography method to this data and from this application, interpret paleogeographic trends in the natural radioactivity. Both the Dundee and Rogers City intervals directly underlie the Traverse Group and combined are the most prolific reservoir within the Michigan Basin. Differences between this study and the Traverse Group include increased well control and “slicing” of a more uniform lithology. Gamma ray log curves for the Dundee and Rogers City Limestones were obtained from 295 vertical wells distributed over the Lower Peninsula of Michigan, converted to Log ASCII Standard files, and input into the well log tomography program. The “slicing” contour results indicate that during the formation of the Dundee and Rogers City intervals, carbonates and evaporites with low natural radioactive signatures on gamma ray logs were deposited. This contrasts the higher gamma ray amplitudes from siliciclastic deltas that cyclically entered the basin during Traverse Group deposition. Additionally, a subtle north-south, low natural radioactive trend in the center of the basin may correlate with previously published Dundee facies tracts. Prominent trends associated with the distribution of limestone and dolomite are not observed because the regional range of gamma ray values for both carbonates are equivalent in the Michigan Basin and additional log curves are needed to separate these lithologies.
Resumo:
With the increasing importance of conserving natural resources and moving toward sustainable practices, the aging transportation infrastructure can benefit from these ideas by improving their existing recycling practices. When an asphalt pavement needs to be replaced, the existing pavement is removed and ground up. This ground material, known as reclaimed asphalt pavement (RAP), is then added into new asphalt roads. However, since RAP was exposed to years of ultraviolet degradation and environmental weathering, the material has aged and cannot be used as a direct substitute for aggregate and binder in new asphalt pavements. One material that holds potential for restoring the aged asphalt binder to a usable state is waste engine oil. This research aims to study the feasibility of using waste engine oil as a recycling agent to improve the recyclability of pavements containing RAP. Testing was conducted in three phases, asphalt binder testing, advanced asphalt binder testing, and laboratory mixture testing. Asphalt binder testing consisted of dynamic shear rheometer and rotational viscometer testing on both unaged and aged binders containing waste engine oil and reclaimed asphalt binder (RAB). Fourier Transform Infrared Spectroscopy (FTIR) testing was carried out to on the asphalt binders blended with RAB and waste engine oil compare the structural indices indicative of aging. Lastly, sample asphalt samples containing waste engine oil and RAP were subjected to rutting testing and tensile strength ratio testing. These tests lend evidence to support the claim that waste engine oil can be used as a rejuvenating agent to chemically restore asphalt pavements containing RAP. Waste engine oil can reduce the stiffness and improve the low temperature properties of asphalt binders blended with RAB. Waste engine oil can also soften asphalt pavements without having a detrimental effect on the moisture susceptibility.
Resumo:
The seasonal appearance of a deep chlorophyll maximum (DCM) in Lake Superior is a striking phenomenon that is widely observed; however its mechanisms of formation and maintenance are not well understood. As this phenomenon may be the reflection of an ecological driver, or a driver itself, a lack of understanding its driving forces limits the ability to accurately predict and manage changes in this ecosystem. Key mechanisms generally associated with DCM dynamics (i.e. ecological, physiological and physical phenomena) are examined individually and in concert to establish their role. First the prevailing paradigm, “the DCM is a great place to live”, is analyzed through an integration of the results of laboratory experiments and field measurements. The analysis indicates that growth at this depth is severely restricted and thus not able to explain the full magnitude of this phenomenon. Additional contributing mechanisms like photoadaptation, settling and grazing are reviewed with a one-dimensional mathematical model of chlorophyll and particulate organic carbon. Settling has the strongest impact on the formation and maintenance of the DCM, transporting biomass to the metalimnion and resulting in the accumulation of algae, i.e. a peak in the particulate organic carbon profile. Subsequently, shade adaptation becomes manifest as a chlorophyll maximum deeper in the water column where light conditions particularly favor the process. Shade adaptation mediates the magnitude, shape and vertical position of the chlorophyll peak. Growth at DCM depth shows only a marginal contribution, while grazing has an adverse effect on the extent of the DCM. The observed separation of the carbon biomass and chlorophyll maximum should caution scientists to equate the DCM with a large nutrient pool that is available to higher trophic levels. The ecological significance of the DCM should not be separated from the underlying carbon dynamics. When evaluated in its entirety, the DCM becomes the projected image of a structure that remains elusive to measure but represents the foundation of all higher trophic levels. These results also offer guidance in examine ecosystem perturbations such as climate change. For example, warming would be expected to prolong the period of thermal stratification, extending the late summer period of suboptimal (phosphorus-limited) growth and attendant transport of phytoplankton to the metalimnion. This reduction in epilimnetic algal production would decrease the supply of algae to the metalimnion, possibly reducing the supply of prey to the grazer community. This work demonstrates the value of modeling to challenge and advance our understanding of ecosystem dynamics, steps vital to reliable testing of management alternatives.
Resumo:
OBJECTIVE: To evaluate the effects of a single preoperative dose of steroid on thyroidectomy outcomes. BACKGROUND: Nausea, pain, and voice alteration frequently occur after thyroidectomy. Because steroids effectively reduce nausea and inflammation, a preoperative administration of steroids could improve these thyroidectomy outcomes. METHODS: Seventy-two patients (men = 20, women = 52) undergoing thyroidectomy for benign disease were included in this randomized, controlled, 2 armed (group D: 8 mg dexamethasone, n = 37; group C: 0.9% NaCl, n = 35), double-blinded study (clinical trial number NCT00619086). Anesthesia, surgical procedures, antiemetics, and analgesic treatments were standardized. Nausea (0-3), pain (visual analog scale), antiemetic and analgesic requirements, and digital voice recording were documented before and 4, 8, 16, 24, 36, and 48 hours after surgery. Patients were followed-up 30 days after hospital discharge. RESULTS: Baseline characteristics were similar among the 2 treatment groups. Nausea was pronounced in the first 16 hours postoperatively (scores were <0.3 and 0.8-1.0 for group D and C, respectively (P = 0.005)), and was significantly lower in group D compared with group C during the observation period (P = 0.001). Pain diminished within 48 hours after surgery (visual analog scale 20 and 35 in group D and C, respectively (P = 0.009)). Antiemetic and analgesic requirements were also significantly diminished. Changes in voice mean frequency were less prominent in the dexamethasone group compared with the placebo group (P = 0.015). No steroid-related complications occurred. CONCLUSION: A preoperative single dose of steroid significantly reduced nausea, vomiting, and pain, and improved postoperative voice function within the first 48 hours (most pronounced within 16 hours) after thyroid resection; this strategy should be routinely applied in thyroidectomies.
Resumo:
The research reported in this dissertation investigates the impact of grain boundaries, film interface, and crystallographic orientation on the ionic conductivity of thin film Gd-doped CeO2 (GDC). Chapter 2 of this work addresses claims in the literature that submicron grain boundaries have the potential to dramatically increase the ionic conductivity of GDC films. Unambiguous testing of this claim requires directly comparing the ionic conductivity of single-crystal GDC films to films that are identical except for the presence of submicron grain boundaries. In this work techniques have been developed to grow GDC films by RF magnetron sputtering from a GDC target on single crystal r plane sapphire substrates. These techniques allow the growth of films that are single crystals or polycrystalline with 80 nm diameter grains. The ionic conductivities of these films have been measured and the data shows that the ionic conductivity of single crystal GDC is greater than that of the polycrystalline films by more than a factor of 4 over the 400-700°C temperature range. Chapter 3 of this work investigates the ionic conductivity of surface and interface regions of thin film Gd-doped CeO2. In this study, single crystal GDC films have been grown to thicknesses varying from 20 to 500 nm and their conductivities have been measured in the 500-700°C temperature range. Decreasing conductivity with decreasing film thickness was observed. Analysis of the conductivity data is consistent with the presence of an approximately 50 nm layer of less conductive material in every film. This study concludes that the surface and interface regions of thin film GDC are less conductive than the bulk single crystal regions, rather than being highly conductive paths. Chapter 4 of this work investigates the ionic conductivity of thin film Gd-doped CeO2 (GDC) as a function of crystallographic orientation. A theoretical expression has been developed for the ionic conductivity of the [100] and [110] directions in single crystal GDC. This relationship is compared to experimental data collected from a single crystal GDC film. The film was grown to a thickness of _300 nm and its conductivity measured along the [100] and [110] orientations in the 500-700°C temperature range. The experimental data shows no statistically significant difference in the conductivities of the [100] and [110] directions in single crystal GDC. This result agrees with the theoretical model which predicts no difference between the conductivities of the two directions.
Resumo:
As the development of genotyping and next-generation sequencing technologies, multi-marker testing in genome-wide association study and rare variant association study became active research areas in statistical genetics. This dissertation contains three methodologies for association study by exploring different genetic data features and demonstrates how to use those methods to test genetic association hypothesis. The methods can be categorized into in three scenarios: 1) multi-marker testing for strong Linkage Disequilibrium regions, 2) multi-marker testing for family-based association studies, 3) multi-marker testing for rare variant association study. I also discussed the advantage of using these methods and demonstrated its power by simulation studies and applications to real genetic data.
Resumo:
The integration of remote monitoring techniques at different scales is of crucial importance for monitoring of volcanoes and assessment of the associated hazard. In this optic, technological advancement and collaboration between research groups also play a key role. Vhub is a community cyberinfrastructure platform designed for collaboration in volcanology research. Within the Vhub framework, this dissertation focuses on two research themes, both representing novel applications of remotely sensed data in volcanology: advancement in the acquisition of topographic data via active techniques and application of passive multi-spectral satellite data to monitoring of vegetated volcanoes. Measuring surface deformation is a critical issue in analogue modelling of Earth science phenomena. I present a novel application of the Microsoft Kinect sensor to measurement of vertical and horizontal displacements in analogue models. Specifically, I quantified vertical displacement in a scaled analogue model of Nisyros volcano, Greece, simulating magmatic deflation and inflation and related surface deformation, and included the horizontal component to reconstruct 3D models of pit crater formation. The detection of active faults around volcanoes is of importance for seismic and volcanic hazard assessment, but not a simple task to be achieved using analogue models. I present new evidence of neotectonic deformation along a north-south trending fault from the Mt Shasta debris avalanche deposit (DAD), northern California. The fault was identified on an airborne LiDAR campaign of part of the region interested by the DAD and then confirmed in the field. High resolution LiDAR can be utilized also for geomorphological assessment of DADs, and I describe a size-distance analysis to document geomorphological aspects of hummock in the Shasta DAD. Relating the remote observations of volcanic passive degassing to conditions and impacts on the ground provides an increased understanding of volcanic degassing and how satellite-based monitoring can be used to inform hazard management strategies in nearreal time. Combining a variety of satellite-based spectral time series I aim to perform the first space-based assessment of the impacts of sulfur dioxide emissions from Turrialba volcano, Costa Rica, on vegetation in the surrounding environment, and establish whether vegetation indices could be used more broadly to detect volcanic unrest.
Resumo:
In the realm of computer programming, the experience of writing a program is used to reinforce concepts and evaluate ability. This research uses three case studies to evaluate the introduction of testing through Kolb's Experiential Learning Model (ELM). We then analyze the impact of those testing experiences to determine methods for improving future courses. The first testing experience that students encounter are unit test reports in their early courses. This course demonstrates that automating and improving feedback can provide more ELM iterations. The JUnit Generation (JUG) tool also provided a positive experience for the instructor by reducing the overall workload. Later, undergraduate and graduate students have the opportunity to work together in a multi-role Human-Computer Interaction (HCI) course. The interactions use usability analysis techniques with graduate students as usability experts and undergraduate students as design engineers. Students get experience testing the user experience of their product prototypes using methods varying from heuristic analysis to user testing. From this course, we learned the importance of the instructors role in the ELM. As more roles were added to the HCI course, a desire arose to provide more complete, quality assured software. This inspired the addition of unit testing experiences to the course. However, we learned that significant preparations must be made to apply the ELM when students are resistant. The research presented through these courses was driven by the recognition of a need for testing in a Computer Science curriculum. Our understanding of the ELM suggests the need for student experience when being introduced to testing concepts. We learned that experiential learning, when appropriately implemented, can provide benefits to the Computer Science classroom. When examined together, these course-based research projects provided insight into building strong testing practices into a curriculum.
Resumo:
In the field of copper metallurgy, the major changes effected in the original metallurgical scheme have been based largely upon the lowering in grade of copper ores, and the more particular demands of the fabricators of the metal. The former trend fostered the development of mineral beneficiation, which in turn caused the conversion from blast furnace to reverberatory furnace smelting.
Resumo:
BACKGROUND: In 2001, the observed annual mortality from Creutzfeldt-Jakob disease (CJD) in Switzerland increased from less than 1.5 to 2.6 per million inhabitants. An underlying cause could not be identified. METHODS: To analyse potential risk factors for sCJD in Switzerland, close relatives of 69 sCJD-patients and 224 frequency age-matched controls were interviewed in a case-control study using a standardised questionnaire. 135 potential risk factors including socio-demographics, medical history, occupation and diet were analysed by logistic regression adjusting for age, sex and education. RESULTS: sCJD patients were more likely to have travelled abroad, worked at an animal laboratory, undergone invasive dental treatment, orthopaedic surgery, ophthalmologic surgery after 1980, regular GP visits, taken medication regularly, and consumed kidney. No differences between patients and controls were found for residency, family history, and exposure to environmental and other dietary factors. CONCLUSION: Although some factors were significantly more frequent among sCJD-cases, this study did not reveal specific explanations for the increased incidence of deaths due to sporadic CJD observed in Switzerland since 2001. Results have to be interpreted with caution due to multiple testing and possible recall bias in association with a long incubation period. The most plausible reason for the increase in Swiss sCJD cases after 2000 is an improved case ascertainment. Therefore, underreporting of cases might well have occurred before the year 2001, and the "real" yearly incidence of sCJD might not be lower than, but rather above 2 per million inhabitants.
Resumo:
Peatlands are widely exploited archives of paleoenvironmental change. We developed and compared multiple transfer functions to infer peatland depth to the water table (DWT) and pH based on testate amoeba (percentages, or presence/absence), bryophyte presence/absence, and vascular plant presence/absence data from sub-alpine peatlands in the SE Swiss Alps in order to 1) compare the performance of single-proxy vs. multi-proxy models and 2) assess the performance of presence/absence models. Bootstrapping cross-validation showing the best performing single-proxy transfer functions for both DWT and pH were those based on bryophytes. The best performing transfer functions overall for DWT were those based on combined testate amoebae percentages, bryophytes and vascular plants; and, for pH, those based on testate amoebae and bryophytes. The comparison of DWT and pH inferred from testate amoeba percentages and presence/absence data showed similar general patterns but differences in the magnitude and timing of some shifts. These results show new directions for paleoenvironmental research, 1) suggesting that it is possible to build good-performing transfer functions using presence/absence data, although with some loss of accuracy, and 2) supporting the idea that multi-proxy inference models may improve paleoecological reconstruction. The performance of multi-proxy and single-proxy transfer functions should be further compared in paleoecological data.
Resumo:
OBJECTIVES To identify factors associated with discrepant outcome reporting in randomized drug trials. STUDY DESIGN AND SETTING Cohort study of protocols submitted to a Swiss ethics committee 1988-1998: 227 protocols and amendments were compared with 333 matching articles published during 1990-2008. Discrepant reporting was defined as addition, omission, or reclassification of outcomes. RESULTS Overall, 870 of 2,966 unique outcomes were reported discrepantly (29.3%). Among protocol-defined primary outcomes, 6.9% were not reported (19 of 274), whereas 10.4% of reported outcomes (30 of 288) were not defined in the protocol. Corresponding percentages for secondary outcomes were 19.0% (284 of 1,495) and 14.1% (334 of 2,375). Discrepant reporting was more likely if P values were <0.05 compared with P ≥ 0.05 [adjusted odds ratio (aOR): 1.38; 95% confidence interval (CI): 1.07, 1.78], more likely for efficacy compared with harm outcomes (aOR: 2.99; 95% CI: 2.08, 4.30) and more likely for composite than for single outcomes (aOR: 1.48; 95% CI: 1.00, 2.20). Cardiology (aOR: 2.34; 95% CI: 1.44, 3.79) and infectious diseases (aOR: 1.77; 95% CI: 1.01, 3.13) had more discrepancies compared with all specialties combined. CONCLUSION Discrepant reporting was associated with statistical significance of results, type of outcome, and specialty area. Trial protocols should be made freely available, and the publications should describe and justify any changes made to protocol-defined outcomes.