967 resultados para eNOS haplotype
Resumo:
Chemokine (C-C motif) ligand 5 (CCL5) and chemokine (C-C motif) receptor 5 are implicated in the pathogenesis of diabetic nephropathy (DN). We hypothesize that variants in these genes may be associated with DN. The CCL5 and chemokine receptor type 5 (CCR5) genes were resequenced, variants identified (n=58), allele frequencies determined in 46 individuals (92 chromosomes) and efficient haplotype tag single-nucleotide polymorphisms (htSNPs) selected to effectively evaluate the common variation in these genes. One reportedly functional gene variant and eight htSNPs were genotyped in a case-control association study involving Caucasian individuals with type 1 diabetes (267 cases with DN and 442 non-nephropathic diabetic controls). Genotyping was performed using MassARRAY iPLEX, TaqMan, gel electrophoresis and direct capillary sequencing. After correction for multiple testing, there were no statistically significant associations between variants in the CCL5 and CCR5 genes and DN. Journal of Human Genetics (2010) 55, 248-251; doi:10.1038/jhg.2010.15; published online 5 March 2010
Resumo:
SNAP25 occurs on chromosome 20p12.2, which has been linked to schizophrenia in some samples, and recently linked to latent classes of psychotic illness in our sample. SNAP25 is crucial to synaptic functioning, may be involved in axonal growth and dendritic sprouting, and its expression may be decreased in schizophrenia. We genotyped 18 haplotype-tagging SNPs in SNAP25 in a sample of 270 Irish high-density families. Single marker and haplotype analyses were performed in FBAT and PDT. We adjusted for multiple testing by computing q values. Association was followed up in an independent sample of 657 cases and 411 controls. We tested for allelic effects on the clinical phenotype by using the method of sequential addition and 5 factor-derived scores of the OPCRIT. Nine of 18 SNPs had Pvalues
Resumo:
Robust associations between the dysbindin gene (DTNBP1) and schizophrenia have been demonstrated in many but not all samples, and evidence that this gene particularly predisposes to negative symptoms in this illness has been presented. The current study sought to replicate the previously reported negative symptom associations in an Irish case-control sample. Association between dysbindin and schizophrenia has been established in this cohort, and a factor analysis of the assessed symptoms yielded three factors, Positive, Negative, and Schneiderian. The sequential addition method was applied using UNPHASED to assess the relationship between these symptom factors and the high-risk haplotype. No associations were detected for any of the symptom factors indicating that the dysbindin risk haplotype does not predispose to a particular group of symptoms in this sample. Several possibilities, such as differing risk haplotypes, may explain this finding. (C) 2009 Wiley-Liss, Inc.
Resumo:
Molecular studies support pharmacological evidence that phosphoinositide signaling is perturbed in schizophrenia and bipolar disorder. The phosphatidylinositol-4-phosphate-5-kinase type-II alpha (PIP4K2A) gene is located on chromosome 10p12. This region has been implicated in both diseases by linkage, and PIP4K2A directly by association. Given linkage evidence in the Irish Study of High Density Schizophrenia Families (ISHDSF) to a region including 10p12, we performed an association study between genetic variants at PIP4K2A and disease. No association was detected through single-marker or haplotype analysis of the whole sample. However, stratification into families positive and negative for the ISHDSF schizophrenia high-risk haplotype (HRH) in the DTNBP1 gene and re-analysis for linkage showed reduced amplitude of the 10p12 linkage peak in the DTNBP1 HRH positive families. Association analysis of the stratified sample showed a trend toward association of PIP4K2A SNPs rs1417374 and rs1409395 with schizophrenia in the DTNBP1 HRH positive families. Despite this apparent paradox, our data may therefore suggest involvement of PIP4K2A in schizophrenia in those families for whom genetic variation in DTNBP1 appears also to be a risk factor. This trend appears to arise from under-transmission of common alleles to female cases. Follow-up association analysis in a large Irish schizophrenia case-control control sample (ICCSS) showed significant association with disease of a haplotype comprising these same SNPs rs1417374-rs1409395, again more so in affected females, and in cases with negative family history of the disease. This study supports a minor role for PIP4K2A in schizophrenia etiology in the Irish population. (C) 2009 Wiley-Liss, Inc.
Resumo:
The synapsin III gene, SYN3, which belongs to the family of synaptic vesicle-associated proteins, has been implicated in the modulation of neurotransmitter release and in synaptogenesis, suggesting a potential role in several neuropsychiatric diseases. The human SYN3 gene is located on chromosome 22q12-13, a candidate region implicated in previous linkage studies of schizophrenia. However, association studies of SYN3 and schizophrenia have produced inconsistent results. In this Study, four SYN3 SNPs (rs133945 (-631 C>G), rs133946(-196 G>A), rs9862 and rs1056484) were tested in three sets of totally 3759 samples that comprise 655 affected subjects and 626 controls in the Irish Case-Control Study of Schizophrenia (ICCSS). 1350 samples incorporating 273 pedigrees in the Irish Study of High Density Schizophrenia Families (ISHDSF), and 564 unrelated schizophrenia patients and 564 healthy individuals in a Chinese case-control sample. The expression levels of SYN3 in schizophrenic patients and unaffected controls were compared using postmortem brain cDNAs provided by the Stanley Medical Research Institute (SMRI). There was no significant association in either the Irish or Chinese case-control samples, nor in the combined samples. Consistent with this finding, we did not find any significant difference in allele or haplotype frequencies when we used the pedigree disequilibrium test to analyze the Irish family sample. In the expression Studies, no significant difference (p = 0.507) was observed between patients and controls. Both the association studies and expression studies didn't support a major role for SYN3 in the susceptibility of schizophrenia in Irish and Chinese populations. (C) 2009 Elsevier Ireland Ltd All rights reserved.
Resumo:
Genetic variation in the serotonin 2A receptor (HTR2A) has been associated with both schizophrenia and suicidal behavior. Our sample comprised 270 Irish high-density schizophrenia families (n = 1,408 subjects, including 755 with psychotic illness). Diagnoses were generated using a modified SCID. All patients who had at least one episode of psychosis were rated on the Operation Criteria Checklist for Psychotic Illness (OPCRIT). Lifetime history of suicidal ideation was determined from medical records and psychiatric interviews and was scored in the OPCRIT. Twelve SNPs were selected for study. Ten of these were tagSNPs derived from HapMap data, along with His452Tyr and T102C. We tested for association with psychotic illness as a whole, as well as stratified by the presence of suicidal ideation, using FBAT and PDTPHASE. Single-marker as well as haplotype-based tests using a
Resumo:
FBXL21 gene encodes an F-box containing protein functioning in the SCIP ubiquitin ligase complex. The role of the F-box protein is to recruit proteins designated for degradation to the ligase complex so they would be ubiquitinated. Using both family and case-control samples, we found consistent associations in and around FBXL21 gene. In the family sample (Irish study of high density schizophrenia families, ISHDSF, 1,350 subjects from 273 families), a minimal PDT P-value of 0.0011 was observed at rs31555. In the case-control sample (Irish case-control study of schizophrenia, ICCSS, 814 cases and 625 controls), significant associations were observed at two markers (rs1859427 P=0.0197, and rs6861170 P=0.0197). In haplotype analyses, haplotype 1-1 (C-T) of rs1859427-rs6861170 was overtransmitted in the ISHDSF (P=0.0437) and was over-represented in the ICCSS (P=0.0177). For both samples, the associated alleles and haplotypes were identical. These data suggested that FBXL21 maybe associated with schizophrenia in the Irish samples. (C) 2008 Wiley-Liss, Inc.
Resumo:
Background: The phosphatidylinositol 3-kinase (PI3K)-AKT signal transduction pathway is critical to cell growth and survival. In vitro functional studies indicate that the candidate schizophrenia susceptibility gene DTNBP1 influences AKT signaling to promote neuronal viability. The AKT1 gene has also been implicated in schizophrenia by association studies and decreased protein expression in the brains of schizophrenic patients.
Methods: The association of DTNBP1 in the Irish Study of High Density Schizophrenia Families (ISHDSF) prompted our investigation of AKT1 for association with disease in this sample. Eight single nucleotide polymorphisms spanning AKT1 were analyzed for association with schizophrenia across four definitions of affection and according to Operational Criteria Checklist of Psychotic Illness (OPCRIT) symptom scales. We examined expression of AKT1 messenger RNA from postmortem brain tissue of schizophrenic, bipolar, and control individuals.
Results: No single marker showed significant association, but the risk haplotype previously found over-transmitted to Caucasian schizophrenic patients was significantly under-transmitted in the ISHDSF (.01 < p < .05), across all OPCRIT symptom dimensions. Exploratory haplotype analysis confirmed association with schizophrenia toward the 5’ end of AKT1 (.008 < p < .049, uncorrected). We found significantly decreased RNA levels in prefrontal cortex of schizophrenic individuals, consistent with reduced AKT1 protein levels reported in schizophrenic brain.
Conclusions: The replication of association of AKT1 gene variants in a further Caucasian family sample adds support for involvement of AKT signaling in schizophrenia, perhaps encompassing a broader clinical phenotype that includes mood dysregulation. We show that AKT signaling might be compromised in schizophrenic and bipolar patients via reduced RNA expression of specific AKT isoforms.
Resumo:
Age-related macular degeneration (AMD) is the most common cause of blindness in older people in developed countries, and risk for this condition may be classified as genetic or environmental, with an interaction between such factors predisposing to this disease. This study investigated the relationship between AMD risk genes, macular pigment optical density (MPOD), which may protect against AMD, and serum concentrations of the macular carotenoids, lutein (L) and zeaxanthin (Z). This was a cross-sectional study of 302 healthy adult subjects. Dietary intake of L and Z was assessed by food frequency questionnaire, and MPOD was measured by customized heterochromatic flicker photometry. We also calculated MPOD Area as the area of MP under the spatial profile curve, to reflect MP across the macula. Serum L and Z were measured by HPLC. Genotyping of tag SNPs in the genes CFH, ARMS2, C3, C2 and BF was undertaken with multiplex polymerase chain reaction (PCR) and primer extension methodology (ABI Snapshot, ABI Warrington UK) on DNA extracted from peripheral blood. The mean ± SD (range) age of the subjects in this study was 48 ± 11 (21-66) years. There was a statistically significant association between CFH genotype and family history of AMD, with subjects having two non-risk CFH haplotypes (n =35), or one non-risk and one protective CFH haplotype (n = 33), being significantly more likely to have a negative family history of AMD (Pearson Chi square: p = 0.001). There was no significant association between the AMD risk genes investigated and either MPOD (One way ANOVA: p > 0.05) or serum concentrations of L or Z (One way ANOVA: p > 0.05, for both). Subjects who were homozygous for risk alleles of both CFH and ARMS2 (n = 4) had significantly lower MPOD at 0.5_ and 1_ retinal eccentricity (Independent samples t test: p
Resumo:
Age-related macular degeneration (AMD) is the most common cause of incurable visual impairment in high-income countries. Previous studies report inconsistent associations between AMD and apolipoprotein E (APOE), a lipid transport protein involved in low-density cholesterol modulation. Potential interaction between APOE and sex, and smoking status has been reported. We present a pooled analysis (n = 21,160) demonstrating associations between late AMD and APOe4 (odds ratio [OR] = 0.72 per haplotype; confidence interval [CI]: 0.65-0.74; P = 4.41×10(-11) ) and APOe2 (OR = 1.83 for homozygote carriers; CI: 1.04-3.23; P = 0.04), following adjustment for age group and sex within each study and smoking status. No evidence of interaction between APOE and sex or smoking was found. Ever smokers had significant increased risk relative to never smokers for both neovascular (OR = 1.54; CI: 1.38-1.72; P = 2.8×10(-15) ) and atrophic (OR = 1.38; CI: 1.18-1.61; P = 3.37×10(-5) ) AMD but not early AMD (OR = 0.94; CI: 0.86-1.03; P = 0.16), implicating smoking as a major contributing factor to disease progression from early signs to the visually disabling late forms. Extended haplotype analysis incorporating rs405509 did not identify additional risks beyond e2 and e4 haplotypes. Our expanded analysis substantially improves our understanding of the association between the APOE locus and AMD. It further provides evidence supporting the role of cholesterol modulation, and low-density cholesterol specifically, in AMD disease etiology.
Resumo:
Background and purpose: Obestatin is a recently-discovered gastrointestinal peptide with established metabolic actions, which is linked to diabetes and may exert cardiovascular benefits. Here we aimed to investigate the specific effects of obestatin on vascular relaxation. Experimental approach: Cumulative relaxation responses to obestatin peptides were assessed in isolated rat aorta and mesenteric artery (n=8) in the presence/absence of selective inhibitors. Complementary studies were performed in cultured bovine aortic endothelial cells (BAEC). Key results: Obestatin peptides elicited concentration-dependent relaxation in both aorta and mesenteric artery. Responses to full-length obestatin(1-23) were greater than those to obestatin(1-10) and obestatin(11-23). Obestatin(1-23)-induced relaxation was attenuated by endothelial denudation, L-NAME (NO synthase inhibitor), high extracellular K(+) , GDP-ß-S (G protein inhibitor), MDL-12,330A (adenylate cyclase inhibitor), wortmannin (PI3K inhibitor), KN-93 (CaMKII inhibitor), ODQ (guanylate cyclase inhibitor) and iberiotoxin (BK(Ca) blocker), suggesting that it is mediated by an endothelium-dependent NO signalling cascade involving an adenylate cyclase-linked G protein-coupled receptor, PI3K/Akt, Ca(2+) -dependent eNOS activation, soluble guanylate cyclase and modulation of vascular smooth muscle K(+) . Supporting data from BAEC indicated that nitrite production, intracellular Ca(2+) and Akt phosphorylation were increased after exposure to obestatin(1-23). Relaxations to obestatin(1-23) were unaltered by inhibitors of candidate endothelium-derived hyperpolarising factors (EDHFs) and combined SK(Ca) /IK(Ca) blockade, suggesting that EDHF-mediated pathways were not involved. Conclusions and Implications: Obestatin produces significant vascular relaxation via specific activation of endothelium-dependent NO signalling. These actions may be important in normal regulation of vascular function and are clearly relevant to diabetes, a condition characterised by endothelial dysfunction and cardiovascular complications.
Resumo:
It is commonly believed that trees were absent in Scandinavia during the last glaciation and first recolonized the Scandinavian Peninsula with the retreat of its ice sheet some 9000 years ago. Here, we show the presence of a rare mitochondrial DNA haplotype of spruce that appears unique to Scandinavia and with its highest frequency to the west—an area believed to sustain ice-free refugia during most of the last ice age. We further show the survival of DNA from this haplotype in lake sediments and pollen of Trøndelag in central Norway dating back ~10,300 years and chloroplast DNA of pine and spruce in lake sediments adjacent to the ice-free Andøya refugium in northwestern Norway as early as ~22,000 and 17,700 years ago, respectively. Our findings imply that conifer trees survived in ice-free refugia of Scandinavia during the last glaciation, challenging current views on survival and spread of trees as a response to climate changes.
Resumo:
We conducted data-mining analyses of genome wide association (GWA) studies of the CATIE and MGS-GAIN datasets, and found 13 markers in the two physically linked genes, PTPN21 and EML5, showing nominally significant association with schizophrenia. Linkage disequilibrium (LD) analysis indicated that all 7 markers from PTPN21 shared high LD (r(2)>0.8), including rs2274736 and rs2401751, the two non-synonymous markers with the most significant association signals (rs2401751, P=1.10 × 10(-3) and rs2274736, P=1.21 × 10(-3)). In a meta-analysis of all 13 replication datasets with a total of 13,940 subjects, we found that the two non-synonymous markers are significantly associated with schizophrenia (rs2274736, OR=0.92, 95% CI: 0.86-0.97, P=5.45 × 10(-3) and rs2401751, OR=0.92, 95% CI: 0.86-0.97, P=5.29 × 10(-3)). One SNP (rs7147796) in EML5 is also significantly associated with the disease (OR=1.08, 95% CI: 1.02-1.14, P=6.43 × 10(-3)). These 3 markers remain significant after Bonferroni correction. Furthermore, haplotype conditioned analyses indicated that the association signals observed between rs2274736/rs2401751 and rs7147796 are statistically independent. Given the results that 2 non-synonymous markers in PTPN21 are associated with schizophrenia, further investigation of this locus is warranted.
Resumo:
Aim
To assess the association of POMC haplotype-tagged single nucleotide polymorphisms (htSNPs) with the development of type 1 diabetes (T1D) in a Caucasian population.
Methods
All exons, intron 1, and approximately 6-kb upstream and 3-kb downstream of the POMC gene were bidirectionally resequenced to identify DNA polymorphisms in 30 individuals. Allele frequencies were determined (60 chromosomes) and efficient htSNPs were selected using the htSNP2 programme. Genotyping was performed in 390 cases, 339 controls and 245 T1D parent-offspring trios, using Taqman, Sequenom and direct-sequencing technologies.
Results
Thirteen polymorphisms (two novel) with a minor allele frequency greater than 1% were identified. Six POMC htSNPs (rs3754863 G>A, ss161151662 A>G, rs3754860 C>T, rs1009388 G>C, rs3769671 A>C, rs1042571 G>A) were identified. Allele and haplotype frequencies were similar between case and control groups (P>0.60 by permutation test), and assessment of allele transmission distortion from informative parents to affected offspring also failed to find any association. Stratification of these analyses for age-at-onset and HLA-DR risk group (DR3/DR4) revealed no significant associations. A haplotype block of 9.86-kb from rs3754863 to rs1042571 was identified, encompassing the POMC gene. Comparison of haplotype frequencies identified the GGCGAG haplotype as protective against T1D in 12.9% of cases vs. 18.3% of controls: ?2=8.18, Pc=0.03 by permutation test.
Conclusion
The POMC SNP haplotype GGCGAG may have a protective effect against T1D in the UK population. However, this finding needs to be replicated, and the cellular and molecular processes influenced by this POMC haplotype determined to fully appreciate its impact.