925 resultados para domain analysis
Resumo:
A joint analysis-synthesis framework is developed for the compressive sensing (CS) recovery of speech signals. The signal is assumed to be sparse in the residual domain with the linear prediction filter used as the sparse transformation. Importantly this transform is not known apriori, since estimating the predictor filter requires the knowledge of the signal. Two prediction filters, one comb filter for pitch and another all pole formant filter are needed to induce maximum sparsity. An iterative method is proposed for the estimation of both the prediction filters and the signal itself. Formant prediction filter is used as the synthesis transform, while the pitch filter is used to model the periodicity in the residual excitation signal, in the analysis mode. Significant improvement in the LLR measure is seen over the previously reported formant filter estimation.
Resumo:
We propose a simple, reliable method based on probability of transitions and distribution of adjacent pixel pairs for steganalysis on digital images in spatial domain subjected to Least Significant Bit replacement steganography. Our method is sensitive to the statistics of underlying cover image and is a variant of Sample Pair Method. We use the new method to estimate length of hidden message reliably. The novelty of our method is that it detects from the statistics of the underlying image, which is invariant with embedding, whether the results it calculate are reliable or not. To our knowledge, no steganalytic method so far predicts from the properties of the stego image, whether its results are accurate or not.
Resumo:
The cytological architecture of the synaptonemal complex (SC), a meiosis-specific proteinaceous structure, is evolutionarily conserved among eukaryotes. However, little is known about the biochemical properties of SC components or the mechanisms underlying their roles in meiotic chromosome synapsis and recombination. Functional analysis of Saccharomyces cerevisiae Hop1, a key structural component of SC, has begun to reveal important insights into its function in interhomolog recombination. Previously, we showed that Hop1 is a structure-specific DNA-binding protein, exhibits higher binding affinity for the Holliday junction, and induces structural distortion at the core of the junction. Furthermore, Hop1 promotes DNA condensation and intra- and intermolecular synapsis between duplex DNA molecules. Here, we show that Hop1 possesses a modular domain organization, consisting of an intrinsically disordered N-terminal domain and a protease-resistant C-terminal domain (Hop1CTD). Furthermore, we found that Hop1CTD exhibits strong homotypic as well as heterotypic protein protein interactions, and its biochemical activities were similar to those of the full-length Hop1 protein. However, Hop1CTD failed to complement the meiotic recombination defects of the Delta hop1 strain, indicating that both N- and C-terminal domains of Hop1 are essential for meiosis and spore formation. Altogether, our findings reveal novel insights into the structure-function relationships of Hop1 and help to further our understanding of its role in meiotic chromosome synapsis and recombination.
Resumo:
Inter-domain linkers (IDLs)' bridge flanking domains and support inter-domain communication in multi-domain proteins. Their sequence and conformational preferences enable them to carry out varied functions. They also provide sufficient flexibility to facilitate domain motions and, in conjunction with the interacting interfaces, they also regulate the inter-domain geometry (IDG). In spite of the basic intuitive understanding of the inter-domain orientations with respect to linker conformations and interfaces, we still do not entirely understand the precise relationship among the three. We show that IDG is evolutionarily well conserved and is constrained by the domain-domain interface interactions. The IDLs modulate the interactions by varying their lengths, conformations and local structure, thereby affecting the overall IDG. Results of our analysis provide guidelines in modelling of multi-domain proteins from the tertiary structures of constituent domain components.
Resumo:
The First Order Reversal Curve (FORC) method has been utilised to understand the magnetization reversal and the extent of the irreversible magnetization of the soft CoFe2O4-hard SrFe12O19 nanocomposite in the nonexchange spring and the exchange spring regime. The single peak switching behaviour in the FORC distribution of the exchange spring composite confirms the coherent reversal of the soft and hard phases. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the FORC measurements. (C) 2013 AIP Publishing LLC.
Resumo:
An attempt to study the fluid dynamic behavior of two phase flow comprising of solid and liquid with nearly equal density in a geometrical case that has an industrial significance in theareas like processing of polymers, food, pharma ceutical, paints. In this work,crystalline silica is considered as the dispersed medium in glycerin. In the CFD analysis carried out,the two phase components are considered to be premixed homogeneously at the initial state. The flow in a cylinder that has an axially driven bi-lobe rotor, a typical blender used in polymer industry for mixing or kneading to render the multi-component mixture to homogeneous condition is considered. A viscous, incompressible, isothermal flow is considered with an assumption that the components do not undergo any physical change and the solids are rigid and mix in fully wetting conditions. Silica with a particle diameter of 0.4 mm is considered and flow is analyzed for different mixing fractions. An industry standard CFD code is used for solving 3D-RANS equations. As the outcome of the study the torque demand by the bi-lobe rotor for different mixture fractions which are estimated show a behavioral consistency to the expected physical phenomena occurring in the domain considered.
Resumo:
In contemporary wideband orthogonal frequency division multiplexing (OFDM) systems, such as Long Term Evolution (LTE) and WiMAX, different subcarriers over which a codeword is transmitted may experience different signal-to-noise-ratios (SNRs). Thus, adaptive modulation and coding (AMC) in these systems is driven by a vector of subcarrier SNRs experienced by the codeword, and is more involved. Exponential effective SNR mapping (EESM) simplifies the problem by mapping this vector into a single equivalent fiat-fading SNR. Analysis of AMC using EESM is challenging owing to its non-linear nature and its dependence on the modulation and coding scheme. We first propose a novel statistical model for the EESM, which is based on the Beta distribution. It is motivated by the central limit approximation for random variables with a finite support. It is simpler and as accurate as the more involved ad hoc models proposed earlier. Using it, we develop novel expressions for the throughput of a point-to-point OFDM link with multi-antenna diversity that uses EESM for AMC. We then analyze a general, multi-cell OFDM deployment with co-channel interference for various frequency-domain schedulers. Extensive results based on LTE and WiMAX are presented to verify the model and analysis, and gain new insights.
Resumo:
Tobacco streak virus (TSV), a member of the genus Ilarvirus (family Bromoviridae), has a tripartite genome and forms quasi-isometric virions. All three viral capsids, encapsidating RNA 1, RNA 2 or RNA 3 and subgenomic RNA 4, are constituted of a single species of coat protein (CP). Formation of virus-like particles (VLPs) could be observed when the TSV CP gene was cloned and the recombinant CP (rCP) was expressed in E. coli. TSV VLPs were found to be stabilized by Zn2+ ions and could be disassembled in the presence of 500 mM CaCl2. Mutational analysis corroborated previous studies that showed that an N-terminal arginine-rich motif was crucial for RNA binding; however, the results presented here demonstrate that the presence of RNA is not a prerequisite for assembly of TSV VLPs. Instead, the N-terminal region containing the zinc finger domain preceding the arginine-rich motif is essential for assembly of these VLPs.
Resumo:
This paper presents a simple technique for reducing the computational effort while solving any geotechnical stability problem by using the upper bound finite element limit analysis and linear optimization. In the proposed method, the problem domain is discretized into a number of different regions in which a particular order (number of sides) of the polygon is chosen to linearize the Mohr-Coulomb yield criterion. A greater order of the polygon needs to be selected only in that region wherein the rate of the plastic strains becomes higher. The computational effort required to solve the problem with this implementation reduces considerably. By using the proposed method, the bearing capacity has been computed for smooth and rough strip footings and the results are found to be quite satisfactory.
Resumo:
Establishing functional relationships between multi-domain protein sequences is a non-trivial task. Traditionally, delineating functional assignment and relationships of proteins requires domain assignments as a prerequisite. This process is sensitive to alignment quality and domain definitions. In multi-domain proteins due to multiple reasons, the quality of alignments is poor. We report the correspondence between the classification of proteins represented as full-length gene products and their functions. Our approach differs fundamentally from traditional methods in not performing the classification at the level of domains. Our method is based on an alignment free local matching scores (LMS) computation at the amino-acid sequence level followed by hierarchical clustering. As there are no gold standards for full-length protein sequence classification, we resorted to Gene Ontology and domain-architecture based similarity measures to assess our classification. The final clusters obtained using LMS show high functional and domain architectural similarities. Comparison of the current method with alignment based approaches at both domain and full-length protein showed superiority of the LMS scores. Using this method we have recreated objective relationships among different protein kinase sub-families and also classified immunoglobulin containing proteins where sub-family definitions do not exist currently. This method can be applied to any set of protein sequences and hence will be instrumental in analysis of large numbers of full-length protein sequences.
Resumo:
Quadrature phase shift keying (QPSK) is one of the most popular modulation schemes in coherent optical communication systems for data rates in excess of 40 Gbps because of its high spectral efficiency. This paper proposes a simple method of implementing a QPSK modulator in integrated optic (IO) domain. The QPSK modulator is realized using standard IO components, such as Y-branches and electro-optic modulators (EOMs). Design optimization of EOM is carried out considering the fabrication constraints, miniaturization aspects, and simplicity. Also, the interdependency between electrode length, operating voltage, and electrode gap of an EOM has been captured in the form of a family of curves. These plots enable designing of EOMs for custom requirements. An innovative approach has been adopted in demonstrating the operation of IO QPSK modulator in terms of phase data extracted from beam propagation model. The results obtained by this approach have been verified using the conventional interferometric approach. The operation of the proposed IO QPSK modulator is experimentally demonstrated. The design of IO QPSK modulator is taken up as a part of a broader scheme that aims at generation of QPSK modulated microwave signal based on optical heterodyning. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
This paper presents a newly developed wavelet spectral finite element (WFSE) model to analyze wave propagation in anisotropic composite laminate with a transverse surface crack penetrating part-through the thickness. The WSFE formulation of the composite laminate, which is based on the first-order shear deformation theory, produces accurate and computationally efficient results for high frequency wave motion. Transverse crack is modeled in wavenumber-frequency domain by introducing bending flexibility of the plate along crack edge. Results for tone burst and impulse excitations show excellent agreement with conventional finite element analysis in Abaqus (R). Problems with multiple cracks are modeled by assembling a number of spectral elements with cracks in frequency-wavenumber domain. Results show partial reflection of the excited wave due to crack at time instances consistent with crack locations. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a new multiscale method which is capable of coupling atomistic and continuum domains for high frequency wave propagation analysis. The problem of non-physical wave reflection, which occurs due to the change in system description across the interface between two scales, can be satisfactorily overcome by the proposed method. We propose an efficient spectral domain decomposition of the total fine scale displacement along with a potent macroscale equation in the Laplace domain to eliminate the spurious interfacial reflection. We use Laplace transform based spectral finite element method to model the macroscale, which provides the optimum approximations for required dynamic responses of the outer atoms of the simulated microscale region very accurately. This new method shows excellent agreement between the proposed multiscale model and the full molecular dynamics (MD) results. Numerical experiments of wave propagation in a 1D harmonic lattice, a 1D lattice with Lennard-Jones potential, a 2D square Bravais lattice, and a 2D triangular lattice with microcrack demonstrate the accuracy and the robustness of the method. In addition, under certain conditions, this method can simulate complex dynamics of crystalline solids involving different spatial and/or temporal scales with sufficient accuracy and efficiency. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Information available in frequency response data is equivalently available in the time domain as a response due to an impulse excitation. The idea to pursue this equivalence to estimate series capacitance is linked to the well-known fact that under impulse excitation, the line/neutral current in a transformer has three distinct components, of which, the initial capacitive component is the first to manifest, followed by the oscillatory and inductive components. Of these, the capacitive component is temporally well separated from the rest-a crucial feature permitting its direct access and analysis. Further, the winding initially behaves as a pure capacitive network, so the initial component must obviously originate from only the (series and shunt) capacitances. With this logic, it should therefore be possible to estimate series capacitance, just by measuring the initial capacitive component of line current and the total shunt capacitance. The principle of the method and details of its implementation on two actual isolated transformerwindings (uniformly wound) are presented. For implementation, a low-voltage recurrent surge generator, a current probe, and a digital oscilloscope are all that is needed. The method is simple and requires no programming and needs least user intervention, thus paving the way for its widespread use.
Resumo:
In this study, we combine available high resolution structural information on eukaryotic ribosomes with low resolution cryo-EM data on the Hepatitis C Viral RNA (IRES) human ribosome complex. Aided further by the prediction of RNA-protein interactions and restrained docking studies, we gain insights on their interaction at the residue level. We identified the components involved at the major and minor contact regions, and propose that there are energetically favorable local interactions between 40S ribosomal proteins and IRES domains. Domain II of the IRES interacts with ribosomal proteins S5 and S25 while the pseudoknot and the downstream domain IV region bind to ribosomal proteins S26, S28 and S5. We also provide support using UV cross-linking studies to validate our proposition of interaction between the S5 and IRES domains II and IV. We found that domain IIIe makes contact with the ribosomal protein S3a (S1e). Our model also suggests that the ribosomal protein S27 interacts with domain IIIc while S7 has a weak contact with a single base RNA bulge between junction IIIabc and IIId. The interacting residues are highly conserved among mammalian homologs while IRES RNA bases involved in contact do not show strict conservation. IRES RNA binding sites for S25 and S3a show the best conservation among related viral IRESs. The new contacts identified between ribosomal proteins and RNA are consistent with previous independent studies on RNA-binding properties of ribosomal proteins reported in literature, though information at the residue level is not available in previous studies.