997 resultados para distributional patterns
Resumo:
T-cell responses in humans are initiated by the binding of a peptide antigen to a human leukocyte antigen (HLA) molecule. The peptide-HLA complex then recruits an appropriate T cell, leading to cell-mediated immunity. More than 2000 HLA class-I alleles are known in humans, and they vary only in their peptide-binding grooves. The polymorphism they exhibit enables them to bind a wide range of peptide antigens from diverse sources. HLA molecules and peptides present a complex molecular recognition pattern, as many peptides bind to a given allele and a given peptide can be recognized by many alleles. A powerful grouping scheme that not only provides an insightful classification, but is also capable of dissecting the physicochemical basis of recognition specificity is necessary to address this complexity. We present a hierarchical classification of 2010 class-I alleles by using a systematic divisive clustering method. All-pair distances of alleles were obtained by comparing binding pockets in the structural models. By varying the similarity thresholds, a multilevel classification was obtained, with 7 supergroups, each further subclassifying to yield 72 groups. An independent clustering performed based only on similarities in their epitope pools correlated highly with pocket-based clustering. Physicochemical feature combinations that best explain the basis of clustering are identified. Mutual information calculated for the set of peptide ligands enables identification of binding site residues contributing to peptide specificity. The grouping of HLA molecules achieved here will be useful for rational vaccine design, understanding disease susceptibilities and predicting risk of organ transplants.
Resumo:
1. Host-parasite interactions have the potential to influence broadscale ecological and evolutionary processes, levels of endemism, divergence patterns and distributions in host populations. Understanding the mechanisms involved requires identification of the factors that shape parasite distribution and prevalence. 2. A lack of comparative information on community-level host-parasite associations limits our understanding of the role of parasites in host population divergence processes. Avian malaria (haemosporidian) parasites in bird communities offer a tractable model system to examine the potential for pathogens to influence evolutionary processes in natural host populations. 3. Using cytochrome b variation, we characterized phylogenetic diversity and prevalence of two genera of avian haemosporidian parasites, Plasmodium and Haemoproteus, and analysed biogeographic patterns of lineages across islands and avian hosts, in southern Melanesian bird communities to identify factors that explain patterns of infection. 4. Plasmodium spp. displayed isolation-by-distance effects, a significant amount of genetic variation distributed among islands but insignificant amounts among host species and families, and strong local island effects with respect to prevalence. Haemoproteus spp. did not display isolation-by-distance patterns, showed marked structuring of genetic variation among avian host species and families, and significant host species prevalence patterns. 5. These differences suggest that Plasmodium spp. infection patterns were shaped by geography and the abiotic environment, whereas Haemoproteus spp. infection patterns were shaped predominantly by host associations. Heterogeneity in the complement and prevalence of parasite lineages infecting local bird communities likely exposes host species to a mosaic of spatially divergent disease selection pressures across their naturally fragmented distributions in southern Melanesia. Host associations for Haemoproteus spp. indicate a capacity for the formation of locally co-adapted host-parasite relationships, a feature that may limit intraspecific gene flow or range expansions of closely related host species.
Resumo:
The kinematic flow pattern in slow deformation of a model dense granular medium is studied at high resolution using in situ imaging, coupled with particle tracking. The deformation configuration is indentation by a flat punch under macroscopic plane-strain conditions. Using a general analysis method, velocity gradients and deformation fields are obtained from the disordered grain arrangement, enabling flow characteristics to be quantified. The key observations are the formation of a stagnation zone, as in dilute granular flow past obstacles; occurrence of vortices in the flow immediately underneath the punch; and formation of distinct shear bands adjoining the stagnation zone. The transient and steady state stagnation zone geometry, as well as the strength of the vortices and strain rates in the shear bands, are obtained from the experimental data. All of these results are well-reproduced in exact-scale non-smooth contact dynamics simulations. Full 3D numerical particle positions from the simulations allow extraction of flow features that are extremely difficult to obtain from experiments. Three examples of these, namely material free surface evolution, deformation of a grain column below the punch and resolution of velocities inside the primary shear band, are highlighted. The variety of flow features observed in this model problem also illustrates the difficulty involved in formulating a complete micromechanical analytical description of the deformation.
Resumo:
Occurrence of the April 25, 2015 (Mw 7.8) earthquake near Gorkha, central Nepal, and another one that followed on May 12 (Mw 7.3), located similar to 140 km to its east, provides an exceptional opportunity to understand some new facets of Himalayan earthquakes. Here we attempt to assess the seismotectonics of these earthquakes based on the deformational field generated by these events, along with the spatial and temporal characteristics of their aftershocks. When integrated with some of the post-earthquake field observations, including the localization of damage and surface deformation, it became obvious that although the mainshock slip was mostly limited to the Main Himalayan Thrust (MHT), the rupture did not propagate to the Main Frontal Thrust (MFT). Field evidence, supported by the available InSAR imagery of the deformation field, suggests that a component of slip could have emerged through a previously identified out-of-sequence thrust/active thrust in the region that parallels the Main Central Thrust (MCT), known in the literature as a co-linear physiographic transitional zone called PT2. Termination of the first rupture, triggering of the second large earthquake, and distribution of aftershocks are also spatially constrained by the eastern extremity of PT2. Mechanism of the 2015 sequence demonstrates that the out-of-sequence thrusts may accommodate part of the slip, an aspect that needs to be considered in the current understanding of the mechanism of earthquakes originating on the MHT. (c) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks.
Resumo:
There has been much interest in understanding collective dynamics in networks of brain regions due to their role in behavior and cognitive function. Here we show that a simple, homogeneous system of densely connected oscillators, representing the aggregate activity of local brain regions, can exhibit a rich variety of dynamical patterns emerging via spontaneous breaking of permutation or translational symmetries. Upon removing just a few connections, we observe a striking departure from the mean-field limit in terms of the collective dynamics, which implies that the sparsity of these networks may have very important consequences. Our results suggest that the origins of some of the complicated activity patterns seen in the brain may be understood even with simple connection topologies.
Resumo:
Two-dimensional magnetic recording 2-D (TDMR) is a promising technology for next generation magnetic storage systems based on a systems-level framework involving sophisticated signal processing at the core. The TDMR channel suffers from severe jitter noise along with electronic noise that needs to be mitigated during signal detection and recovery. Recently, we developed noise prediction-based techniques coupled with advanced signal detectors to work with these systems. However, it is important to understand the role of harmful patterns that can be avoided during the encoding process. In this paper, we investigate the Voronoi-based media model to study the harmful patterns over multitrack shingled recording systems. Through realistic quasi-micromagnetic simulation studies, we identify 2-D data patterns that contribute to high media noise. We look into the generic Voronoi model and present our analysis on multitrack detection with constrained coded data. We show that the 2-D constraints imposed on input patterns result in an order of magnitude improvement in the bit-error rate for the TDMR systems. The use of constrained codes can reduce the complexity of 2-D intersymbol interference (ISI) signal detection, since the lesser 2-D ISI span can be accommodated at the cost of a nominal code rate loss. However, a system must be designed carefully so that the rate loss incurred by a 2-D constraint does not offset the detector performance gain due to more distinguishable readback signals.
Resumo:
In this paper, we propose a method for forming steady patterns of microparticles in a dispersion using optical tweezers. We demonstrate how to control the congregation of particles in a dispersion and to manually fabricate a pattern, The steady pattern (nay be useful for in-depth research, and the method will have applications in biology and nanotechnology.
Resumo:
The velocity fields of oscillatory convection have been measured using the techniques of Particle Image Velocimetry (PIV) in a liquid bridge of half floating zone with small typical scales of a few millimeters for emphasizing the thermocapillary effect in comparison with the effect of buoyancy. The flow patterns of the oscillatory flow have been studied experimentally in a liquid bridge. The flow patterns in the liquid bridge are classified with mode numbers according to oscillatory flow characteristics. Results of the experiment show that the mode depends on the aspect ratio as well as the volume ratio of the liquid bridge. The experimental results are helpful for studying the structure of flow at the onset of oscillatory thermocapillary convection in a liquid bridge.
Resumo:
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.
Resumo:
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Fast and correct analysis of such information is important in for instance geospatial and social visualization applications. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a dataset to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap we report on a between-subjects experiment comparing novice users error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the dataset, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users when analyzing complex spatiotemporal patterns.