971 resultados para dipole antennas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal antennas have been proposed to improve the bandwidth of resonant structures and optical antennas. Their multiband characteristics are of interest in radiofrequency and microwave technologies. In this contribution we link the geometry of the current paths built-in the fractal antenna with the spectral response. We have seen that the actual currents owing through the structure are not limited to the portion of the fractal that should be geometrically linked with the signal. This fact strongly depends on the design of the fractal and how the different scales are arranged within the antenna. Some ideas involving materials that could actively respond to the incoming radiation could be of help to spectrally select the response of the multiband design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practical application of optical antennas in detection devices strongly depends on its ability to produce an acceptable signal-to-noise ratio for the given task. It is known that, due to the intrinsic problems arising from its sub-wavelength dimensions, optical antennas produce very small signals. The quality of these signals depends on the involved transduction mechanism. The contribution of different types of noise should be adapted to the transducer and to the signal extraction regime. Once noise is evaluated and measured, the specific detectivity, D*, becomes the parameter of interest when comparing the performance of antenna coupled devices with other detectors. However, this parameter involves some magnitudes that can be defined in several ways for optical antennas. In this contribution we are interested in the evaluation and comparison of D_ values for several bolometric optical antennas working in the infrared and involving two materials. At the same time, some material and geometrical parameters involved in the definition of noise and detectivity will be discussed to analyze the suitability of D_ to properly account for the performance of optical antennas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seebeck nanoantennas, which are based on the thermoelectric effect, have been proposed for electromagnetic energy harvesting and infrared detection. The responsivity and frequency dependence of three types of Seebeck nanoantennas is obtained by electromagnetic simulation for different materials. Results show that the square spiral antenna has the widest bandwidth and the highest induced current of the three analyzed geometries. However, the geometry that presented the highest temperature gradient was the bowtie antenna, which favors the thermoelectric effect in a Seebeck nanoantenna. The results also show that these types of devices can present a voltage responsivity as high as 36  μV/W36  μV/W for titanium–nickel dipoles resonant at far-infrared wavelengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographical references (76-77)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Contract AF33(657)-8460 Project No. 6278, Task No. 40572."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Contract No. AF33(616)-3220 Project No. 6(7-4600) Task 40572 Wright Air Development Center"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Contract AF33(616)-6079 Project No. 9-(13-6278) Task 40572. Sponsored by: Wright Air Development Center"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographical references (p. 58-59)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Contract No. AF33(616)-310 RDO No. R-112-110 SR-6f2"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"June 1962".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography (leaf 11).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Contract No. AF33(616)-3220 Project No. 6(7-4600) Task 40572 Wright Air Development Center"