958 resultados para diagnoses of plasma electron density
Resumo:
Introduction: Endothelin-1 is a potent vasoconstricting growth peptide. In physiologic conditions basal levels maintain vascular homeostasis, conversely in pathological situations it may be expressed in response to chronic and acute vascular injury. Elevated levels of plasma ET-1 have been identified in sub-populations at risk of ischaemic heart disease (IHD) including smokers, diabetics and hyerlipidaemic subjects and in patients with atherosclerotic disease. This peptide may be chronically expressed, such as in congestive heart failure where it has been used as a prognostic marker of disease severity and also acutely, after cardiac revascularisation surgery, possibly as a result of endothelial injury and ischaemia. Aims: The objectives of this study were to (1) identify basal endothelin-1 concentrations in a young healthy control group with no risk factors for IHD (control group 1); (2) to compare; (1) venous plasma ET-1 levels preoperatively and post-operatively in patients undergoing CABG surgery, (3) to compare pre-operative plasma ET-1 levels from the CABG group with an age and gender matched control group (control group 2) and (4) combine all three groups to assess correlations between plasma ET-1 and the various risk factors for IHD, including smoking, hypertension, hyperlipidemia, diabetes and family history. Methods: Venous specimens were collected in chilled EDTA tubes and samples measured using an ELISA assay (Biomedica), following the standard protocol for human EDTA plasma. Results: Forty CABG patients (5F, 35M, mean age 66 yrs), 15 control group 1 subjects (8F, 7M, mean age 29 yrs) and 30 control group 2 subjects (5F, 25M, mean age 61 yrs) participated in the study. No significant difference was detected in plasma ET-1 levels between the controls (1) and (2), and the CABG group, where plasma ET-1 levels were 3.37+/ 5.19 pmol/L, 1.99+/3.74 pmol/L and 1.28+/1.27 pmol/L, respectively. There was a non-significant elevation in post-op ET-1 plasma in comparison with the pre-op levels (2.50+/0.51 Vs 1.45+/6.44). There were also no statistical correlation between risk factors for IHD including smoking, hypertension, NIDDM, hyperlipidemia or family history when data from both patient and controls groups was merged. Conclusion: Contrary to other findings, plasma ET-1 does not appear to a valid marker for IHD or factors which are strongly associated with the pathogenesis of this disease.
Resumo:
There is currently considerable interest in developing general non-linear density models based on latent, or hidden, variables. Such models have the ability to discover the presence of a relatively small number of underlying `causes' which, acting in combination, give rise to the apparent complexity of the observed data set. Unfortunately, to train such models generally requires large computational effort. In this paper we introduce a novel latent variable algorithm which retains the general non-linear capabilities of previous models but which uses a training procedure based on the EM algorithm. We demonstrate the performance of the model on a toy problem and on data from flow diagnostics for a multi-phase oil pipeline.
Resumo:
Low-density parity-check codes with irregular constructions have recently been shown to outperform the most advanced error-correcting codes to date. In this paper we apply methods of statistical physics to study the typical properties of simple irregular codes. We use the replica method to find a phase transition which coincides with Shannon's coding bound when appropriate parameters are chosen. The decoding by belief propagation is also studied using statistical physics arguments; the theoretical solutions obtained are in good agreement with simulation results. We compare the performance of irregular codes with that of regular codes and discuss the factors that contribute to the improvement in performance.
Resumo:
Plasma or "dry" etching is an essential process for the production of modern microelectronic circuits. However, despite intensive research, many aspects of the etch process are not fully understood. The results of studies of the plasma etching of Si and Si02 in fluorine-containing discharges, and the complementary technique of plasma polymerisation are presented in this thesis. Optical emission spectroscopy with argon actinometry was used as the principle plasma diagnostic. Statistical experimental design was used to model and compare Si and Si02 etch rates in CF4 and SF6 discharges as a function of flow, pressure and power. Etch mechanisms m both systems, including the potential reduction of Si etch rates in CF4 due to fluorocarbon polymer formation, are discussed. Si etch rates in CF4 /SF6 mixtures were successfully accounted for by the models produced. Si etch rates in CF4/C2F6 and CHF3 as a function of the addition of oxygen-containing additives (02, N20 and CO2) are shown to be consistent with a simple competition between F, 0 and CFx species for Si surface sites. For the range of conditions studied, Si02 etch rates were not dependent on F-atom concentration, but the presence of fluorine was essential in order to achieve significant etch rates. The influence of a wide range of electrode materials on the etch rate of Si and Si02 in CF4 and CF4 /02 plasmas was studied. It was found that the Si etch rate in a CF4 plasma was considerably enhanced, relative to an anodised aluminium electrode, in the presence of soda glass or sodium or potassium "doped" quartz. The effect was even more pronounced in a CF4 /02 discharge. In the latter system lead and copper electrodes also enhanced the Si etch rate. These results could not be accounted for by a corresponding rise in atomic fluorine concentration. Three possible etch enhancement mechanisms are discussed. Fluorocarbon polymer deposition was studied, both because of its relevance to etch mechanisms and its intrinsic interest, as a function of fluorocarbon source gas (CF4, C2F6, C3F8 and CHF3), process time, RF power and percentage hydrogen addition. Gas phase concentrations of F, H and CF2 were measured by optical emission spectroscopy, and the resultant polymer structure determined by X-ray photoelectron spectroscopy and infrared spectroscopy. Thermal and electrical properties were measured also. Hydrogen additions are shown to have a dominant role in determining deposition rate and polymer composition. A qualitative description of the polymer growth mechanism is presented which accounts for both changes in growth rate and structure, and leads to an empirical deposition rate model.
Resumo:
OBJECTIVES: To study possible oxidation of proteins and lipids in plasma and sarcoplasmic reticulum (SR) from skeletal muscles and to assess the effects of pyridoindole antioxidants in rats with adjuvant arthritis (AA) and to analyze modulation of Ca-ATPase activity from SR (SERCA). METHODS: SR was isolated by ultracentrifugation, protein carbonyls in plasma and SR were determined by ELISA. Lipid peroxidation was analyzed by TBARS determination and by mass spectrometry. ATPase activity of SERCA was measured by NADH-coupled enzyme assay. Tryptophan fluorescence was used to analyze conformational alterations. RESULTS: Increase of protein carbonyls and lipid peroxidation was observed in plasma of rats with adjuvant arthritis. Pyridoindole antioxidant stobadine and its methylated derivative SMe1 decreased protein carbonyl formation in plasma, effect of stobadine was significant. Lipid peroxidation of plasma was without any effect of pyridoindole derivatives. Neither protein oxidation nor lipid peroxidation was identified in SR from AA rats. SERCA activity from AA rats increased significantly, stobadine and SMe1 diminished enzyme activity. Ratio of tryptophan fluorescence intensity in SR of AA rats increased and was not influenced by antioxidants. CONCLUSION: Plasma proteins and lipids were oxidatively injured in rats with AA; antioxidants exerted protection only with respect to proteins. In SR, SERCA activity was altered, apparently induced by its conformational changes, as supported by study of tryptophan fluorescence. Stobadine and SMe1 induced a decrease of SERCA activity, elevated in AA rats, but they did not affect conformational changes associated with tryptophan fluorescence.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Tensile strengths, impact energies, and fracture toughness data are presented for pure Fe-0.5 C, Astaloy A with 0.2 and 0.6%C, and for Distaloy AB-0.6%C at relative densities of about 0.9, achieved by conventional pressing and sintering, and at close to 1.0, achieved by powder forging. At low relative density, properties are controlled by sizes of sinter necks; it is postulated that toughness scales as (x/a)4, x/a being the ratio of neck diameter to particle diameter. At high relative density, microvoid coalescence and good toughness is observed for low strength microstructures whereas cleavage and poor toughness is a concomitant of high strength.