932 resultados para delivery system
Resumo:
A LLE-GC-MS method was developed to detect PPCPs in surface water samples from Big Cypress National Park, Everglades National Park and Biscayne National Park in South Florida. The most frequently found PPCPs were caffeine, DEET and triclosan with detected maximum concentration of 169 ng/L, 27.9 ng/L and 10.9 ng/L, respectively. The detection frequencies of hormones were less than PPCPs. Detected maximal concentrations of estrone, 17β-estradiol, coprostan-3-ol, coprostane and coprostan-3-one were 5.98 ng/L, 3.34 ng/L, 16.5 ng/L, 13.5 ng/L and 6.79 ng/L, respectively. An ASE-SPE-GC-MS method was developed and applied to the analysis of the sediment and soil area where reclaimed water was used for irrigation. Most analytes were below detection limits, even though some of analytes were detected in the reclaimed water at relatively high concentrations corroborating the fact that PPCPs do not significantly partition to mineral phases. An online SPE-HPLC-APPI-MS/MS method and an online SPE-HPLC-HESI-MS/MS method were developed to analyze reclaimed water and drinking water samples. In the reclaimed water study, reclaimed water samples were collected from the sprinkler for a year-long period at Florida International University Biscayne Bay Campus, where reclaimed water was reused for irrigation. Analysis results showed that several analytes were continuously detected in all reclaimed water samples. Coprostanol, bisphenol A and DEET's maximum concentration exceeded 10 μg/L (ppb). The four most frequently detected compounds were diphenhydramine (100%), DEET (98%), atenolol (98%) and carbamazepine (96%). In the study of drinking water, 54 tap water samples were collected from the Miami-Dade area. The maximum concentrations of salicylic acid, ibuprofen and DEET were 521 ng/L, 301 ng/L and 290 ng/L, respectively. The three most frequently detected compounds were DEET (93%), carbamazepine (43%) and salicylic acid (37%), respectively. Because the source of drinking water in Miami-Dade County is the relatively pristine Biscayne aquifer, these findings suggest the presence of wastewater intrusions into the delivery system or the onset of direct influence of surface waters into the shallow aquifer.
Resumo:
Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5–2.5 nm. The host-guest association constant Ka was 1,639 M−1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer.
Resumo:
Relationships between academic achievement and type of curriculum delivery system, Montessori or traditional, in a diverse group of learners from a public school district were examined in this study. In a repeated measures, within subjects design, students from an elementary Montessori program were paired with agemates from a traditional group on the basis of similar Stanford Achievement Test Scores in reading or math during the baseline year. Two subsequent administrations of the Stanford were observed for each subject to elucidate possible differences which might emerge based on program affiliation over the three year duration of the study. ^ Mathematics scores for both groups were not observed to be significantly different, although following the initial observation, the Montessori group continued to produce higher mean scores than did the traditional students. Marginal significance between the groups suggests that the data analysis should continue in an effort to elucidate a possible trend toward significance at the .05 level. ^ Reading scores for the groups demonstrated marginally significant differences by one analytical method, and significant differences when analyzed with a second method. In the second and third years of the study, Montessori students produced means which consistently outperformed the traditional group. ^ Recommendations included tracking subsequent administrations of the Stanford Achievement Test for all pairs of subjects in order to evaluate emerging trends in both subject areas. ^
Resumo:
Myocardial cell transplantation can compensate for the loss of necrotic cardiomyocytes. The objective of this research study was to reformulate the hydrogel with concentrations of growth factors, such as Leukemia Inhibitory Factor (LIF), Hepatocyte Growth Factor (HGF), and Interleukin-6 (IL-6). A controlled delivery system of PEO-PPO-PEO was formulated for release of a single growth factor and of multiple growth factors. Cytotoxicity and proliferation assay for single growth factors starting with 4000 skeletal myoblasts yielded their highest proliferation at 4 days with HGF (25,500 cells) and LIF (42,000 cells), while IL-6 (115,000 cells) generated its highest proliferation at 5 days. Combination of LIF and IL-6 resulted in highest proliferation at day 2 (220,000 cells), HGF and LIF (108,000 cells), and HGF and IL-6 (80,000 cells) both at 5 days. Viability at 37°C was maintained during the five days at 98-99%. The formulation was successful in myotube formation while maintaining a high purity of myoblasts in culture. The new formulation induced controlled release of growth factors and skeletal myoblasts delivery under favorable conditions while increasing the proliferation of myoblasts.
Resumo:
Helicobacter pylori is a spiral, Gram negative, mobile, and microaerophilic bacteria recognized as a major cause of gastritis, ulcer, gastric cancer, and gastric low grade, B cell, mucosa – associated lymphoid tissue (MALT) lymphoma, constituting an important microorganism in medical microbiology. Its importance comes from the difficulty of treatment because the requirement of multiple drugs use, besides the increasing emergence of resistant and multiresistant strains to antibiotics used in th e clinic. In order to expand safe and effective therapeutic options , chemical studies on medicinal plants by obtaining extracts, fractions, isolated compounds or essential oils with some biological activity has been intensified . Given the above, the objective was to evaluate the inhi bitory activity of organic extracts derived from Syzygium cumini and Encholirium spectabile, with antiulcer history, and the essential oil, obtained from S. cumini, against H. pylori (ATCC 43504) by the disk diffusion method, for qualitative evaluation, an d determination of minimum inhibitory concentration (MIC) using the broth microdilution method, for quantitative analysis. Also was evaluated the extracts in vitro toxicity by a hemolytic assay using sheep red blood cells, and VERO and HeLa cells using the MTT assay to analyze cell viability. The extracts of both plant used in antimicrobial assays did not inhibit bacterial growth, however the essential oil of S. cumini (SCFO) proved effective, showing MIC value of 205 μg/mL (0.024 % dilution of the original oil). In the hemolytic assay, the same oil shows moderate toxicity, by promote 25% hemolysis at 1000 μg/mL. Regarding the cytotoxicity in cell culture, the SCFO, at 260 μg/mL, affected the cell viability around 80% of HeLa and 50% of VERO cells. So the oi l obtained from S. cumini leaves has antimicrobial activity against H. pylori and cytotoxicity potential, suggesting a source of new molecule drug candidates, since new stages of toxicity in vitro and in vivo, as well, chemical characterization be evaluate d. Moreover, the development of a prospective drug delivery system can result in a prototype to be used in preclinical tests.
Resumo:
Chitosan is a polymer biocompatibility and biodegradability widely used in drug delivery systems. The co-crosslinking of chitosan with sodium sulfate and genipin, to form particulate systems is related of making them more resistant to acidic pH and to modulate the release kinetics for the oral route. Triamcinolone is a glucocorticoid with anti-inflammatory and immunosuppressive actions. The nanoparticles were prepared by co-crosslinking and characterized for particle size, PDI, zeta potential, crosslinking degree, encapsulation rate, morphology, infrared spectroscopy, thermal analysis, release kinetics and cells studies. The nanoparticles were prepared initially without genipin with sodium sulphate and the particles parameters were monitored in function of different ratio of drug / polymer, different concentrations of sodium sulfate and polysorbate 80 and the drip mode of crosslinkers on polymers. After optimizing conditions, the chosen system parameters without genipin included mean diameter of 312.20 ± 5.70 nm, PDI 0.342 ± 0.013 and zeta potential of 20.18 ± 2.28 mV. The genipin was introduced into the system analyzing different concentrations (0.5, 1.0 and 2.0 mM) and crosslinking times (3, 6, 12 and 24 h). Evaluating crosslinking time with genipin (0.5 mM) it was showed that varying the genipin reaction time the systems size ranged from 235.1 to 334.4 nm, the PDI from 0.321 to 0.392 and zeta potential 20.92 to 30.39 mV. The crosslinking degree that coud vary from 14 to 30 %. Nanoparticles without genipina, 6 h and 24 h crosslinking time were dried by spray-drying method. Analysis by scanning electron micrograph (SEM) revealed that the microparticles showed spherical morphology. The encapsulation rate was 75 ± 2.3 % using validated HPLC methodology. The infrared analysis showed chemical interactions between the components of the formulation. Thermal analysis showed that systems with a higher degree of crosslinking had a higher thermal stability. On release kinetics, increasing the degree of crosslinking was able to decrease the concentration and rate of release of triamcinolone. In studies with liver cancer cells (HepG2) and colon (HT-29), the microparticulate prepared with triamcinolone and 24 h of crosslinking with genipin showed a potential for antitumor activity in hepatic cell line HepG2. Therefore, a new delivery system for triamcinolone on polymeric nanoparticles of chitosan cocrosslinked with genipin and sodium sulfate was obtained with hepatic antitumor potential.
Resumo:
Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.
Resumo:
Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.
Resumo:
Assessing frequency and extent of mass movement at continental margins is crucial to evaluate risks for offshore constructions and coastal areas. A multidisciplinary approach including geophysical, sedimentological, geotechnical, and geochemical methods was applied to investigate multistage mass transport deposits (MTDs) off Uruguay, on top of which no surficial hemipelagic drape was detected based on echosounder data. Nonsteady state pore water conditions are evidenced by a distinct gradient change in the sulfate (SO4**2-) profile at 2.8 m depth. A sharp sedimentological contact at 2.43 m coincides with an abrupt downward increase in shear strength from approx. 10 to >20 kPa. This boundary is interpreted as a paleosurface (and top of an older MTD) that has recently been covered by a sediment package during a younger landslide event. This youngest MTD supposedly originated from an upslope position and carried its initial pore water signature downward. The kink in the SO4**2- profile approx. 35 cm below the sedimentological and geotechnical contact indicates that bioirrigation affected the paleosurface before deposition of the youngest MTD. Based on modeling of the diffusive re-equilibration of SO4**2- the age of the most recent MTD is estimated to be <30 years. The mass movement was possibly related to an earthquake in 1988 (approx. 70 km southwest of the core location). Probabilistic slope stability back analysis of general landslide structures in the study area reveals that slope failure initiation requires additional ground accelerations. Therefore, we consider the earthquake as a reasonable trigger if additional weakening processes (e.g., erosion by previous retrogressive failure events or excess pore pressures) preconditioned the slope for failure. Our study reveals the necessity of multidisciplinary approaches to accurately recognize and date recent slope failures in complex settings such as the investigated area.
Resumo:
Several previous studies have shown that submarine mass-movements can profoundly impact the shape of pore water profiles. Therefore, pore water geochemistry and diffusion models were proposed as tools for identifying and dating recent (max. several thousands of years old) mass-transport deposits (MTDs). In particular, sulfate profiles evidentially indicate transient pore water conditions generated by submarine landslides. After mass-movements that result in the deposition of sediment packages with distinct pore water signatures, the sulfate profiles can be kink-shaped and evolve into the concave and linear shape with time due to molecular diffusion. Here we present data from the RV METEOR cruise M78/3 along the continental margin off Uruguay and Argentina. Sulfate profiles of 15 gravity cores are compared with the respective acoustic facies recorded by a sediment echosounder system. Our results show that in this very dynamic depositional setting, non-steady state profiles occur often, but are not exclusively associated with mass-movements. Three sites that show acoustic indications for recent MTDs are presented in detail. Where recent MTDs are identified, a geochemical transport/reaction model is used to estimate the time that has elapsed since the perturbation of the pore water system and, thus, the timing of the MTD emplacement. We conclude that geochemical analyses are a powerful complementary tool in the identification of recent MTDs and provide a simple and accurate way of dating such deposits.
Resumo:
Objectives: The current study aims to evaluate dosage form preferences in children and young adults together with identifying the key pragmatic dosage form characteristics that would enable appropriate formulation of orally disintegrating tablets (ODTs). Methods: International, multisite, cross-sectional questionnaire of children and young adults aged from 6 to 18 years. Eligibility was based on age, ability to communicate and previous experience in taking medications. The study was carried out at three locations: the UK, Saudi Arabia and Jordan. The questionnaire instrument was designed for participant self-completion under supervision of the study team.Results 104 questionnaires were completed by the study cohort (n=120, response rate 87%). Results: showed that ODTs were the most preferred oral dosage forms (58%) followed by liquids (20%), tablets (12%) and capsules (11%). The preferred colours were pink or white while the preferred size was small (<8 mm) with a round shape. With regard to flavour, strawberry was the most preferred (30.8%), while orange was the least preferred (5.8%). The results also showed that the most important physical characteristics of ODTs were disintegration time followed by taste, size and flavour, respectively. Conclusions: The results of our study support the WHO's claim for a shift of paradigm from liquid towards ODTs dosage forms for drug administration to young children older than 6 years. Data from this study will also equip formulators to prioritise development of key physical/performance attributes within the delivery system.
Resumo:
Smart hydrogels for biomedical applications are highly researched materials. However, integrating them into a device for implantation is difficult. This paper investigates an integrated delivery device designed to deliver an electro-responsive hydrogel to a target location inside a blood vessel with the purpose of creating an occlusion. The paper describes the synthesis and characterization of a Pluronic/methacrylic acid sodium salt electro-responsive hydrogel. Application of an electrical bias decelerates the expansion of the hydrogel. An integrated delivery system was manufactured to deliver the hydrogel to the target location in the body. Ex vivo and in vivo experiments in the carotid artery of sheep were used to validate the concept. The hydrogel was able to completely occlude the blood vessel reducing the blood flow from 245 to 0 ml/min after implantation. Ex vivo experiments showed that the hydrogel was able to withstand physiological blood pressures of > 270 mm·Hg without dislodgement. The results showed that the electro-responsive hydrogel used in this paper can be used to create a long-term occlusion in a blood vessel without any apparent side effects. The delivery system developed is a promising device for the delivery of electro-responsive hydrogels.
Resumo:
L’utilisation de nanovecteurs pour la livraison contrôlée de principes actifs est un concept commun de nous jours. Les systèmes de livraison actuels présentent encore cependant des limites au niveau du taux de relargage des principes actifs ainsi que de la stabilité des transporteurs. Les systèmes composés à la fois de nanovecteurs (liposomes, microgels et nanogels) et d’hydrogels peuvent cependant permettre de résoudre ces problèmes. Dans cette étude, nous avons développé un système de livraison contrôlé se basant sur l’incorporation d’un nanovecteur dans une matrice hydrogel dans le but de combler les lacunes des systèmes se basant sur un vecteur uniquement. Une telle combinaison pourrait permettre un contrôle accru du relargage par stabilisation réciproque. Plus spécifiquement, nous avons développé un hydrogel structuré intégrant des liposomes, microgels et nanogels séparément chargés en principes actifs modèles potentiellement relargués de manière contrôlé. Ce contrôle a été obtenu par la modification de différents paramètres tels que la température ainsi que la composition et la concentration en nanovecteurs. Nous avons comparé la capacité de chargement et la cinétique de relargage de la sulforhodamine B et de la rhodamine 6G en utilisant des liposomes de DOPC et DPPC à différents ratios, des nanogels de chitosan/acide hyaluronique et des microgels de N-isopropylacrylamide (NIPAM) à différents ratios d’acide méthacrylique, incorporés dans un hydrogel modèle d’acrylamide. Les liposomes présentaient des capacités de chargement modérés avec un relargage prolongé sur plus de dix jours alors que les nanogels présentaient des capacités de chargement plus élevées mais une cinétique de relargage plus rapide avec un épuisement de la cargaison en deux jours. Comparativement, les microgels relarguaient complétement leur contenu en un jour. Malgré une cinétique de relargage plus rapide, les microgels ont démontré la possibilité de contrôler finement le chargement en principe actif. Ce contrôle peut être atteint par la modification des propriétés structurelles ou en changeant le milieu d’incubation, comme l’a montré la corrélation avec les isothermes de Langmuir. Chaque système développé a démontré un potentiel contrôle du taux de relargage, ce qui en fait des candidats pour des investigations futures.
Resumo:
The neoliberal period was accompanied by a momentous transformation within the US health care system. As the result of a number of political and historical dynamics, the healthcare law signed by President Barack Obama in 2010 ‑the Affordable Care Act (ACA)‑ drew less on universal models from abroad than it did on earlier conservative healthcare reform proposals. This was in part the result of the influence of powerful corporate healthcare interests. While the ACA expands healthcare coverage, it does so incompletely and unevenly, with persistent uninsurance and disparities in access based on insurance status. Additionally, the law accommodates an overall shift towards a consumerist model of care characterized by high cost sharing at time of use. Finally, the law encourages the further consolidation of the healthcare sector, for instance into units named “Accountable Care Organizations” that closely resemble the health maintenance organizations favored by managed care advocates. The overall effect has been to maintain a fragmented system that is neither equitable nor efficient. A single payer universal system would, in contrast, help transform healthcare into a social right.