993 resultados para degradation compounds
Resumo:
The present work aims to characterize and quantify the phenolic composition and to evaluate the antioxidant activity of Glycyrrhiza glabra L. (commonly known as licorice) rhizomes and roots. The antioxidant potential of its methanol/water extract could be related with flavones (mainly apigenin derivatives), flavanones (mainly liquirintin derivatives), a methylated isoflavone and a chalcone, identified in the extract. Lipid peroxidation inhibition was the most pronounced antioxidant effect (EC50=0.24±0.01 µg/mL and 22.74±2.42 µg/mL in TBARS and -carotene/linoleate assays, respectively), followed by free radicals scavenging activity (EC50=111.54±6.04 µg/mL) and, finally, reducing power (EC50=128.63±0.21 µg/mL). In this sense, licorice extract could be used as a source of antioxidants for pharmaceutical, cosmetic and/or food industries.
Resumo:
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).
Resumo:
Parchment stands for a multifaceted material made from animal skin, which has been used for centuries as a writing support or as bookbinding. Due to the historic value of objects made of parchment, understanding their degradation and their condition is of utmost importance to archives, libraries and museums, i.e., the assessment of parchment degradation is mandatory, although it is hard to do with traditional methodologies and tools for problem solving. Hence, in this work we will focus on the development of a hybrid decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate Parchment Degradation and the respective Degree-of-Confidence that one has on such a happening.
Resumo:
Background: Numerous diseases have been related with free radicals overproduction and oxidative stress. Botanical preparations possess a multitude of bioactive properties, including antioxidant potential, which has been mainly related with the presence of phenolic compounds. However, the mechanisms of action of these phytochemicals, in vivo effects, bioavailability and bio-efficacy still need research. Scope and Approach: The present report aims to provide a critical review on the aspects related with the in vivo antioxidant activity of phenolic extracts and compounds from plant origin. Key findings: Biological functions beyond the human metabolism were discussed, comparing in vivo vs. in vitro studies, as also focusing the conditioning factors for phenolic compounds bioavailability and bio-efficacy. Furthermore, an upcoming perspective about the use of phytochemicals as life expectancy promoters and anti-aging factors in human individuals was provided. Conclusions: Overall, and despite all of those advances, the study of the biological potential of numerous natural matrices still remains a hot topic among the scientific community. In fact, the available knowledge about the responsible phytochemicals for the biological potential, their mechanisms of action, the establishment of therapeutic and prophylactic doses, and even the occurrence of biochemical inter-relations, is considerable scarce.
Resumo:
Dissertação de mestrado em Química Medicinal
Resumo:
Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biomedicina)
Resumo:
We investigated the reductive intramolecular cyclization of bromopropargyl ethers derivatives, catalyzed by electrogenerated (1,4,8,11-tetramethyl-1,4,8,11-tetraaza-cyclotetradecane)nickel(I), [Ni(tmc)]+ as the catalysts in N,N,N-trimethyl-N-(2- hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide,[N1 1 1 2(OH)][NTf2] and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim][NTf2] by cyclic voltammetry and controlled-potential electrolysis. The results show that the reaction leads to the formation of the expected cyclic compounds, which are important intermediates in the synthesis of natural products with possible biological activities.
Resumo:
Current societal challenges increasingly demand the need to seek for efficient and sustainable solutions to daily problems. Construction, as a result of its activity, is one of the main responsible industry for the exploitation of resources and greenhouse gas emissions. In this way, several research works are being undertaken to change some of the current practices. This paper presents the work being done at University of Minho to study de degradation of natural fibers when used as a sustainable solution for soil reinforcement. Jute and sisal fibrous structures (0º/90º) were studied in terms of their degradation over time, when incorporated into soil and when subject to accelerated aging tests in a QUV weathering test equipment. Results show that the process of biodegradation of natural fibers is clearly accelerated by the action of temperature, moisture and solar radiation, explaining further degradation of jute and sisal fibers when exposed to these factors, although more pronounced in jute fabric structures.
Resumo:
Phenolic acids are present in our diet in different foods. In particular, mushrooms are a good source of these molecules. Due to their bioactive properties, phenolic acids are extensively studied and there is evidence of their role in disease prevention. Nevertheless, in vivo, these compounds are metabolized and circulate in the organism as glucuronated, sulfated and methylated metabolites, displaying higher or lower bioactivity. To clarify the importance of the metabolism of phenolic acids, the knowledge about the bioactivity of the metabolites is extremely important. In this review, chemical features, biosynthesis and bioavailability of phenolic acids are discussed as well as the chemical and enzymatic synthesis of their metabolites. Finally, the metabolites bioactive properties are compared with that of the corresponding parental compounds.
Resumo:
The Euterpe oleracea Mart. (açaí) is a plant from the Amazon region, classified as "super fruit" because of its various functional properties. However, limited investigation has been performed on açaí by-products, such as seeds. Therefore, the aim of this work was to characterized the phenolic compounds of the aqueous extract of açaí seeds and further evaluate its bioactivity (antioxidant and cytotoxic activities. Only proanthocyanidins were detected, being a B-type (epi)catechin tetramer the most abundant; however, procyanidin trimmers were the most predominant form. Açaí seeds extract revealed a high antioxidant (EC50 ranging from 3.6 to 19.4 μg/mL) and cytotoxic activity, being more effective in the cervical carcinoma cell line (HeLa; GI50 = 18 μg/mL); it did not show toxicity for non-tumor cells. Açaí seeds are considered a waste and could have an added economic benefit, through the extraction of natural antioxidants, particularly proanthocyanidins, that could find applications in food and pharmaceutical industries.
Resumo:
Mushrooms contain a multitude of biomolecules with nutritional and/or biological activity. Among the bioactive molecules, phenolic compounds and tocopherols are the most responsible for their antioxidant activity. In the present work, Boletus edulis, Lentinus edodes and Xerocomus badius, three edible mushroom species originated from Poland, were analyzed for their chemical composition and antioxidant activity. Carbohydrates were the most abundant macronutrients, followed by proteins and ash. Fructose, mannitol and trehalose were the prevalent sugars, but glucose was only found in B. edulis. Polyunsaturated fatty acids predominated over mono and saturated fatty acids. Palmitic, oleic and linoleic acids were abundant in the three samples. α- and β- Tocopherols were quantified in all the samples, but γ-tocopherol was only identified in X. badius. Oxalic and fumaric acids were quantified in the three samples; quinic acid was only present in L. edodes, and malic and citric acids were only found in X. badius. p-Hydroxybenzoic, protocatechuic and cinnamic acids were quantified in all the species, while p-coumaric acid was only found in B. edulis. This species and X. badius revealed the highest antioxidant properties, being B. edulis more effective in radicals scavenging activity and reducing power, and X. badius in lipid peroxidation inhibition, which is related with the highest amounts in phenolic compounds and tocopherols, respectively.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Tese de Doutoramento em Biologia de Plantas
Resumo:
Tese de Doutoramento em Biologia Ambiental e Molecular