755 resultados para decreased food intake
Resumo:
The advent of highly active antiretroviral therapy (HAART) improved HIV infection prognosis. However, adverse metabolic and morphologic effects emerged, highlighting a lack of investigation into the role of nutritional interventions among this population. The present study evaluated the impact of a nutritional counseling program on prevention of morphologic and metabolic changes in patients living with HIV/AIDS receiving HAART. A 12-month randomized clinical trial was conducted with 53 adults of both genders in use of HAART. Subjects were allocated to either an intervention group (IG) or a control group (CG). Nutritional counseling was based on the promotion of a healthy diet pattern. Anthropometrical, biochemical, blood pressure, and food intake variables were assessed on four separate occasions. Sub scapular skin-fold results showed a significant tendency for increase between time 1 (Mean IG = 14.9 mm; CG = 13.6 mm), time 3 (Mean IG = 16.7 mm; CG = 18.2 mm), and time 4 (Mean IG = 16.4 mm; CG = 17.7 mm). Lipid percentage intake presented a greater increase among controls (time 1 mean = 26.3%, time 4 mean = 29.6%) than among IG subjects (time 1 mean = 29.1%, time 4 mean = 28.9%). Moreover, participants allocated to the IG presented an increase in dietetic fiber intake of almost 10 grams. The proposed nutritional counseling program proved to be effective in improving diet by reducing fat consumption and increasing fiber intake.
Resumo:
Vitamin A deficiency in preschool children of Recife, Northeast of Brazil. The purpose of the study was to evaluate the extent of vitamin A deficiency (VAD) among preschool children in the city of Recife, Northeast Brazil. The sample comprised 344 children of both sexes, 24 to 60 months old, in 18 public day care centres in the city of Recife, in 2007. The nutritional status of vitamin A was assessed by biochemical (serum retinol) and dietetic (vitamin A rich-food consumption) indicators and the pondo-stature status through anthropometric indicators weight-for-age, height-for-age and weight-for-height. The prevalence of hyporetinolemia (<0.70 mu mol / L) was 7.7% (IC95% 4.88 - 11.81), which characterizes the VAD as a light-type public health problem, according to World Health Organization criteria. On the other hand, 29.6% (IC95% 24.22 - 35.63) of children had acceptable or marginal levels (0.70 to 1.04 mu mol/L) of retinol. Regarding the vitamin A rich-food intake, values below the EAR (Estimated Average Requirement) - 210 mu g/day for children of 1 to 3 years old and 275 mu g/day for children of 4 to 8 years old - were 8.1% and 21.3% respectively. The prevalence of anthropometrical deficits (<-2 scores -Z) in preschool children were 2.5% for the indicator weight-for-age, 8.6% for height-for-age and 1.5% for weight-for-height. The research findings point out to the importance of institutionalization for the appropriate nutritional status of children and maintenance of adequate reserves of vitamin A. However, more studies are needed focusing on non-institutionalized preschool, or children living outside the privileged environment of public day care centres.
Resumo:
The Brazilian Osteoporosis Study (BRAZOS) is the first epidemiological study carried out in a representative sample of Brazilian men and women aged 40 years or older. The prevalence of fragility fractures is about 15.1% in the women and 12.8% in the men. Moreover, advanced age, sedentarism, family history of hip fracture, current smoking, recurrent falls, diabetes mellitus and poor quality of life are the main clinical risk factors associated with fragility fractures. The Brazilian Osteoporosis Study (BRAZOS) is the first epidemiological study carried out in a representative sample of Brazilian men and women aged 40 years or older with the purpose of identifying the prevalence and the main clinical risk factors (CRF) associated with osteoporotic fracture in our population. A total of 2,420 individuals (women, 70%) from 150 different cities in the five geographic regions in Brazil, and all different socio-economical classes were selected to participate in the present survey. Anthropometrical data as well as life habits, fracture history, food intake, physical activity, falls and quality of life were determined by individual quantitative interviews. The representative sampling was based on Brazilian National data provided by the 2000 and 2003 census. Low trauma fracture was defined as that resulting of a fall from standing height or less in individuals 50 years or older at specific skeletal sites: forearm, femur, ribs, vertebra and humerus. Sampling error was 2.2% with 95% confidence intervals. Logistic regression analysis models were designed having the fragility fracture as the dependent variable and all other parameters as the independent variable. Significance level was set as p < 0.05. The average of age, height and weight for men and women were 58.4 +/- 12.8 and 60.1 +/- 13.7 years, 1.67 +/- 0.08 and 1.56 +/- 0.07 m and 73.3 +/- 14.7 and 64.7 +/- 13.7 kg, respectively. About 15.1% of the women and 12.8% of the men reported fragility fractures. In the women, the main CRF associated with fractures were advanced age (OR = 1.6; 95% CI 1.06-2.4), family history of hip fracture (OR = 1.7; 95% CI 1.1-2.8), early menopause (OR = 1.7; 95% CI 1.02-2.9), sedentary lifestyle (OR = 1.6; 95% CI 1.02-2.7), poor quality of life (OR = 1.9; 95% CI 1.2-2.9), higher intake of phosphorus (OR = 1.9; 95% CI 1.2-2.9), diabetes mellitus (OR = 2.8; 95% CI 1.01-8.2), use of benzodiazepine drugs (OR = 2.0; 95% CI 1.1-3.6) and recurrent falls (OR = 2.4; 95% CI 1.2-5.0). In the men, the main CRF were poor quality of life (OR = 3.2; 95% CI 1.7-6.1), current smoking (OR = 3.5; 95% CI 1.28-9.77), diabetes mellitus (OR = 4.2; 95% CI 1.27-13.7) and sedentary lifestyle (OR = 6.3; 95% CI 1.1-36.1). Our findings suggest that CRF may contribute as an important tool to identify men and women with higher risk of osteoporotic fractures and that interventions aiming at specific risk factors (quit smoking, regular physical activity, prevention of falls) may help to manage patients to reduce their risk of fracture.
Resumo:
Background & aims: Pregnancy is a period characterized by high metabolic requirements and physiological changes in the female organism. During this period, Low body stores of vitamins and minerals including antioxidants can have adverse effects on the mother and foetus. This cross-sectional. study assessed plasma concentrations of ascorbic acid (AA) in 117 parturients admitted into a university hospital in S (a) over tildeo Paulo city, Brazil. Methods: The concentrations of AA were determined by the high performance liquid chromatographic method. Data concerning socioeconomic, demographic, obstetric and nutritional characteristics of the parturients were collected by a standardized questionnaire. Results: The prevalence of AA deficiency (< 22.7 mu mol/L) among the parturients was 30.8%. Mean plasma AA concentrations were lower in single/divorced women (27.84 +/- 3.48 mu mol./L) compared with married/single with partner women (34.78 +/- 1.85 mu mol/L) (p = 0.047). Blood AA concentrations were significantly correlated with per capita income (r = 0.36, p < 0.001) and vitamin C-rich food intake score (r = 0.42, p < 0.001). Conclusion: The high prevalence of hypovitaminosis C detected in this study is probably due to an inadequate intake of foods rich in vitamin C and tow income. We alert to the need for increasing the intake of vitamin C-rich foods through educational. programs, especially for tow income populations. (c) 2007 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Habitat use affects food intake, reproductive fitness and body temperature control in reptiles. Habitat use depends on both the characteristics of the animal and the environmental heterogeneity. In this study we investigated habitat use in a population of the South-American rattlesnake, Crotalus durissus, in a cerrado (the Brazilian savanna) remnant, in south-eastern Brazil. In general, snakes appeared to be thermal generalists. However, they showed substrate temperature preferences in the rainy season, when they selected colder substrates during the day and warmer substrates at night. Individuals were predominantly active on the surface and more frequently found under bushes. Furthermore, in general, the principal component analysis results indicate that rattlesnakes are generalists regarding the microhabitat variables examined in this study. These habitat characteristics, associated with a low thermal selectivity, indicate that rattlesnakes are able to colonize deforested areas where shade occurrence and vegetation cover are similar to those in the cerrado.
Resumo:
We investigated whether variants in major candidate genes for food intake and body weight regulation contribute to obesity-related traits under a multilocus perspective. We studied 375 Brazilian subjects from partially isolated African-derived populations (quilombos). Seven variants displaying conflicting results in previous reports and supposedly implicated in the susceptibility of obesity-related phenotypes were investigated: beta(2)-adrenergic receptor (ADRB2) (Arg16Gly), insulin induced gene 2 (INSIG2) (rs7566605), leptin (LEP) (A19G), LEP receptor (LEPR) (Gln223Arg), perilipin (PLIN) (6209T > C), peroxisome proliferator-activated receptor-gamma (PPARG) (Pro12Ala), and resistin (RETN) (-420C > G). Regression models as well as generalized multifactor dimensionality reduction (GMDR) were employed to test the contribution of individual effects and higher-order interactions to BMI and waist-hip ratio (WHR) variation and risk of overweight/obesity. The best multilocus association signal identified in the quilombos was further examined in an independent sample of 334 Brazilian subjects of European ancestry. In quilombos, only the PPARG polymorphism displayed significant individual effects (WHR variation, P = 0.028). No association was observed either with the risk of overweight/obesity (BMI >= 25 kg/m(2)), risk of obesity alone (BMI >= 30 kg/m(2)) or BMI variation. However, GMDR analyses revealed an interaction between the LEPR and ADRB2 polymorphisms (P = 0.009) as well as a third-order effect involving the latter two variants plus INSIG2 (P = 0.034) with overweight/obesity. Assessment of the LEPR-ADRB2 interaction in the second sample indicated a marginally significant association (P = 0.0724), which was further verified to be limited to men (P = 0.0118). Together, our findings suggest evidence for a two-locus interaction between the LEPR Gln223Arg and ADRB2 Arg16Gly variants in the risk of overweight/obesity, and highlight further the importance of multilocus effects in the genetic component of obesity.
Resumo:
The central actions of leptin are essential for homeostatic control of adipose tissue mass, glucose metabolism, and many autonomic and neuroendocrine systems. In the brain, leptin acts on numerous different cell types via the long-form leptin receptor (LepRb) to elicit its effects. The precise identification of leptin`s cellular targets is fundamental to understanding the mechanism of its pleiotropic central actions. We have systematically characterized LepRb distribution in the mouse brain using in situ hybridization in wildtype mice as well as by EYFP immunoreactivity in a novel LepRb-IRES-Cre EYFP reporter mouse line showing high levels of LepRb mRNA/EYFP coexpression. We found substantial LepRb mRNA and EYFP expression in hypothalamic and extrahypothalamic sites described before, including the dorsomedial nucleus of the hypothalamus, ventral premammillary nucleus, ventral tegmental area, parabrachial nucleus, and the dorsal vagal complex. Expression in insular cortex, lateral septal nucleus, medial preoptic area, rostral linear nucleus, and in the Edinger-Westphal nucleus was also observed and had been previously unreported. The LepRb-IRES-Cre reporter line was used to chemically characterize a population of leptin receptor-expressing neurons in the midbrain. Tyrosine hydroxylase and Cre reporter were found to be coexpressed in the ventral tegmental area and in other midbrain dopaminergic neurons. Lastly, the LepRbI-RES-Cre reporter line was used to map the extent of peripheral leptin sensing by central nervous system (CNS) LepRb neurons. Thus, we provide data supporting the use of the LepRb-IRES-Cre line for the assessment of the anatomic and functional characteristics of neurons expressing leptin receptor. J. Comp. Neurol. 514:518-532, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
The lateral hypothalamic area (LHA) participates in the integration of sensory information and somatomotor responses associated with hunger and thirst. Although the LHA is neurochemically heterogeneous, a particularly high number of cells express melanin-concentrating hormone (MCH), which has been reported to play a role in energy homeostasis. Treatment with MCH increases food intake, and MCH mRNA is overexpressed in leptin-deficient (ob/ob) mice. Mice lacking both MCH and leptin present reduced body fat, mainly due to increased resting energy expenditure and locomotor activity. Dense MCH innervation of the cerebral motor cortex (MCx) and the pedunculopontine tegmental nucleus (PPT), both related to motor function, has been reported. Therefore, we postulated that a specific group of MCH neurons project to these areas. To investigate our hypothesis, we injected retrograde tracers into the MCx and the PPT of rats, combined with immunohistochemistry. We found that 25% of the LHA neurons projecting to the PPT were immunoreactive for MCH, and that 75% of the LHA neurons projecting to the MCx also contained MCH. Few MCH neurons were found to send collaterals to both areas. We also found that 15% of the incerto-hypothalamic neurons projecting to the PPT expressed MCH immunoreactivity. Those neurons preferentially innervated the rostral PPT. In addition, we observed that the MCH neurons express glutamic acid decarboxylase mRNA, a gamma-aminobutyric acid (GABA) synthesizing enzyme. We postulate that MCH/GABA neurons are involved in the inhibitory modulation of the innervated areas, decreasing motor activity in states of negative energy balance. (C) 2007 Published by Elsevier B.V.
Distinct subsets of hypothalamic genes are modulated by two different thermogenesis-inducing stimuli
Resumo:
Obesity results from an imbalance between food intake and energy expenditure, two vital functions that are tightly controlled by specialized neurons of the hypothalamus. The complex mechanisms that integrate these two functions are only beginning to be deciphered. The objective of this study was to determine the effect of two thermogenesis-inducing conditions, i.e., ingestion of a high-fat (HF) diet and exposure to cold environment, on the expression of 1,176 genes in the hypothalamus of Wistar rats. Hypothalamic gene expression was evaluated using a cDNA macroarray approach. mRNA and protein expressions were determined by reverse-transcription PCR (RT-PCR) and immunoblot. Cold exposure led to an increased expression of 43 genes and to a reduced expression of four genes. HF diet promoted an increased expression of 90 genes and a reduced expression of 78 genes. Only two genes (N-methyl-D-aspartate (NMDA) receptor 2B and guanosine triphosphate (GTP)-binding protein G-alpha-i1) were similarly affected by both thermogenesis-inducing conditions, undergoing an increment of expression. RT-PCR and immunoblot evaluations confirmed the modulation of NMDA receptor 2B and GTP-binding protein G-alpha-i1, only. This corresponds to 0.93% of all the responsive genes and 0.17% of the analyzed genes. These results indicate that distinct environmental thermogenic stimuli can modulate predominantly distinct profiles of genes reinforcing the complexity and multiplicity of the hypothalamic mechanisms that regulate energy conservation and expenditure.
Resumo:
In diet-induced obesity, hypothalamic and systemic inflammatory factors trigger intracellular mechanisms that lead to resistance to the main adipostatic hormones, leptin and insulin. Tumor necrosis factor-alpha (TNF-alpha) is one of the main inflammatory factors produced during this process and its mechanistic role as an inducer of leptin and insulin resistance has been widely investigated. Most of TNF-alpha inflammatory signals are delivered by TNF receptor 1 (R1); however, the role played by this receptor in the context of obesity-associated inflammation is not completely known. Here, we show that TNFR1 knock-out (TNFR1 KO) mice are protected from diet-induced obesity due to increased thermogenesis. Under standard rodent chow or a high-fat diet, TNFR1 KO gain significantly less body mass despite increased caloric intake. Visceral adiposity and mean adipocyte diameter are reduced and blood concentrations of insulin and leptin are lower. Protection from hypothalamic leptin resistance is evidenced by increased leptin-induced suppression of food intake and preserved activation of leptin signal transduction through JAK2, STAT3, and FOXO1. Under the high-fat diet, TNFR1 KO mice present a significantly increased expression of the thermogenesis-related neurotransmitter, TRH. Further evidence of increased thermogenesis includes increased O(2) consumption in respirometry measurements, increased expressions of UCP1 and UCP3 in brown adipose tissue and skeletal muscle, respectively, and increased O(2) consumption by isolated skeletal muscle fiber mitochondria. This demonstrates that TNF-alpha signaling through TNFR1 is an important mechanism involved in obesity-associated defective thermogenesis.
Resumo:
Considering that melatonin has been implicated in body weight control, this work investigated whether this effect involves the regulation of adipogenesis. 3T3-L1 preadipocytes were induced to differentiate in the absence or presence of melatonin (10(-3) m). Swiss-3T3 cells ectopically and conditionally (Tet-off system) over-expressing the 34 kDa C/EBP beta isoform (Swiss-LAP cells) were employed as a tool to assess the mechanisms of action at the molecular level. Protein markers of the adipogenic phenotype were analyzed by Western blot. At 36 hr of differentiation of 3T3-L1 preadipocytes, a reduction of PPAR gamma expression was detected followed by a further reduction, at day 4, of perilipin, aP2 and adiponectin protein expression in melatonin-treated cells. Real-time PCR analysis also showed a decrease of PPAR gamma (60%), C/EBP alpha (75%), adiponectin (30%) and aP2 (40%) mRNA expression. Finally, we transfected Swiss LAP cells with a C/EBP alpha gene promoter/reporter construct in which luciferase expression is enhanced in response to C/EBP beta activity. Culture of such transfected cells in the absence of tetracycline led to a 2.5-fold activation of the C/EBP alpha promoter. However, when treated with melatonin, the level of C/EBP alpha promoter activation by C/EBP beta was reduced by 50% (P = 0.05, n = 6). In addition, this inhibitory effect of melatonin was also reflected in the phenotype of the cells, since their capacity to accumulate lipids droplets was reduced as confirmed by the poor staining with Oil Red O. In conclusion, melatonin at a concentration of 10(-3) m works as a negative regulator of adipogenesis acting in part by inhibiting the activity of a critical adipogenic transcription factor, C/EBP beta.
Resumo:
Study Objectives: Chronic sleep deprivation of rats causes hyperphagia without body weight gain. Sleep deprivation hyperphagia is prompted by changes in pathways governing food intake; hyperphagia may be adaptive to sleep deprivation hypermetabolism. A recent paper suggested that sleep deprivation might inhibit ability of rats to increase food intake and that hyperphagia may be an artifact of uncorrected chow spillage. To resolve this, a palatable liquid diet (Ensure) was used where spillage is insignificant. Design: Sleep deprivation of male Sprague Dawley rats was enforced for 10 days by the flowerpot/platform paradigm. Daily food intake and body weight were measured. On day 10, rats were transcardially perfused for analysis of hypothalamic mRNA expression of the orexigen, neuropeptide Y (NPY). Setting: Morgan State University, sleep deprivation and transcardial perfusion; University of Maryland, NPY in situ hybridization and analysis. Measurements and Results: Using a liquid diet for accurate daily measurements, there was no change in food intake in the first 5 days of sleep deprivation. Importantly, from days 6-10 it increased significantly, peaking at 29% above baseline. Control rats steadily gained weight but sleep-deprived rats did not. Hypothalamic NPY mRNA levels were positively correlated to stimulation of food intake and negatively correlated with changes in body weight. Conclusion: Sleep deprivation hyperphagia may not be apparent over the short term (i.e., <= 5 days), but when extended beyond 6 days, it is readily observed. The timing of changes in body weight and food intake suggests that the negative energy balance induced by sleep deprivation prompts the neural changes that evoke hyperphagia.
Resumo:
Type 2 diabetes mellitus results from the complex association of insulin resistance and pancreatic beta-cell failure. Obesity is the main risk factor for type 2 diabetes mellitus, and recent studies have shown that, in diet-induced obesity, the hypothalamus becomes inflamed and dysfunctional, resulting in the loss of the perfect coupling between caloric intake and energy expenditure. Because pancreatic beta-cell function is, in part, under the control of the autonomic nervous system, we evaluated the role of hypothalamic inflammation in pancreatic islet function. In diet-induced obesity, the earliest markers of hypothalamic inflammation are present at 8 weeks after the beginning of the high fat diet; similarly, the loss of the first phase of insulin secretion is detected at the same time point and is restored following sympathectomy. Intracerebroventricular injection of a low dose of tumor necrosis factor a leads to a dysfunctional increase in insulin secretion and activates the expression of a number of markers of apoptosis in pancreatic islets. In addition, the injection of stearic acid intracerebroventricularly, which leads to hypothalamic inflammation through the activation of tau-like receptor-4 and endoplasmic reticulum stress, produces an impairment of insulin secretion, accompanied by increased expression of markers of apoptosis. The defective insulin secretion, in this case, is partially dependent on sympathetic signal-induced peroxisome proliferator receptor-gamma coactivator Delta a and uncoupling protein-2 expression and is restored after sympathectomy or following PGC1 alpha expression inhibition by an antisense oligonucleotide. Thus, the autonomic signals generated in concert with hypothalamic inflammation can impair pancreatic islet function, a phenomenon that may explain the early link between obesity and defective insulin secretion.
Resumo:
Obesity is increasing, reaching epidemic levels in many regions of the world. Studies have shown that consumption of peanuts influences on weight control and this influence may be due to the action of trypsin inhibitors sacietogênica that condition increased plasma colescistocinina (CCK). Moreover, the peanut has other health benefits, and these assignments are guaranteed to increase their production and consumption of several of its products, including the paçoca peanut. The aim of this study was to identify the presence of a trypsin inhibitor in paçoca peanut and evaluate its effect on food intake, weight gain and histomorphological changes in swiss mice (n = 8) and Wistar rats (n = 6). Experimental diets were prepared based on the AIN-93G and supplemented with tack or peanut trypsin inhibitor partially purified paçoca peanut (AHTI). After each treatment, the animals were anesthetized and euthanized, their bloods were collected by cardiac puncture for the determination of CCK and other biochemical parameters (glucose, triglycerides, total cholesterol, high density lipoprotein, low density lipoprotein, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase and albumin) and their pancreas removed for histologic and morphometric analysis. The supplementation with paçoca peanut and the AHTI showed a decrease of body weight gain and food intake in both mice and rats, due to the satiety, since the animals showed no evidence of impairment of nutritional status conditioned by consumption the AHTI. There were also observed biochemical or morphological important when compared with controls. However, AHTI led to increased secretion of CCK, a peptide sacietogênico. Thus, these results indicate that AHTI present in paçoca peanut, is able to enhance the secretion of plasma CCK and thereby reduce the weight gain associated with lower food intake of experimenta animals
Resumo:
The seeds are excellent sources of proteinase inhibitors and have been highlighted owing to various applications. Among these applications are those in effect on food intake and weight gain that stand out because of the increasing number of obese individuals. This study evaluated the effects of trypsin inhibitor present in the seed of tamarind (Tamarindus indica L.) reduction in weight gain, biochemical and morphological alterations in Wistar rats. For this, we partially purified a trypsin inhibitor tamarind seed. This inhibitor, ITT2 at a concentration of 25 mg / kg body weight, over a period of 14 days was able to reduce food intake in rats (n = 6) by approximately 47%, causing a reduction in weight gain approximately 70% when compared with the control group. With the evaluation of the in vivo digestibility was demonstrated that the animals lost weight due to satiety, presented by the reduction of food intake, since there were significant differences between true digestibility for the control group (90.7%) and the group treated with inhibitor (89.88%). Additionally, we checked the deeds of ITT2 on biochemical parameters (glucose, triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase, gamma glutamyl transferase albumin, globulin, total protein and C-reactive protein) and these, when assessed in the study groups showed no statistically significant variations. We also evaluate the histology of some organs, liver, stomach, intestine, and pancreas, and showed no changes. And to evaluate the effect of trypsin inhibitor on food intake due to the satiety is regulated by cholecystokinin (CCK) were measured plasma levels, and it was observed that the levels of CCK in animals receiving ITT2 were significantly higher ( 20 + 1.22) than in animals receiving only solution with casein (10.14 + 2.9) or water (5.92 + 1.15). Thus, the results indicate that the effect caused ITT2 satiety, reducing food intake, which in turn caused a reduction in weight gain in animals without causing morphological and biochemical changes, this effect caused by the elevation of plasma levels CCK