976 resultados para control software
Resumo:
Our research described in this paper identifies a three part premise relating to the spyware paradigm. Firstly the data suggests spyware is proliferating at an exponential rate. Secondly ongoing research confirms that spyware produces many security risks – including that of privacy/confidentiality breaches via illicit data collection and reporting. Thirdly, anti-spyware controls are improving but are still considered problematic for several reasons. Our research then concludes that control measures to counter this very significant challenge should merit compliance auditing – and this auditing may effectively target the vital message passing performed by all illicit data collection spyware. Our research then evolves into an experiment involving the design and implementation of a software audit tool to conduct the desired compliance auditing. The software audit tool is positioned at the protected network’s gateway. The software audit tool uses ‘phone-home’ IP addresses as spyware signatures to detect the presence of the offending software. The audit tool also has the capability to differentiate legitimate message passing software from that produced by spyware – and ‘learn’ both new spyware signatures and new legitimate message passing profiles. The testing stage of the software has proven successful – albeit using very limited levels of network message passing variety and frequency.
Resumo:
This paper describes the implementation of a TMR (Triple Modular Redundant) microprocessor system on a FPGA. The system exhibits true redundancy in that three instances of the same processor system (both software and hardware) are executed in parallel. The described system uses software to control external peripherals and a voter is used to output correct results. An error indication is asserted whenever two of the three outputs match or all three outputs disagree. The software has been implemented to conform to a particular safety critical coding guideline/standard which is popular in industry. The system was verified by injecting various faults into it.
Resumo:
Timinganalysis of assembler code is essential to achieve the strongest possible guarantee of correctness for safety-critical, real-time software. Previous work has shown how timingconstrain ts on controlflow paths through high-level language programs can be formalised using the semantics of the statements comprisingthe path. We extend these results to assembler-level code where it becomes possible to not only determine timingconstrain ts, but also to verify them against the known execution times for each instruction. A minimal formal model is developed with both a weakest liberal precondition and a strongest postcondition semantics. However, despite the formalism’s simplicity, it is shown that complex timingb ehaviour associated with instruction pipeliningand iterative code can be modelled accurately.
Resumo:
Well understood methods exist for developing programs from given specifications. A formal method identifies proof obligations at each development step: if all such proof obligations are discharged, a precisely defined class of errors can be excluded from the final program. For a class of closed systems such methods offer a gold standard against which less formal approaches can be measured. For open systems -those which interact with the physical world- the task of obtaining the program specification can be as challenging as the task of deriving the program. And, when a system of this class must tolerate certain kinds of unreliability in the physical world, it is still more challenging to reach confidence that the specification obtained is adequate. We argue that widening the notion of software development to include specifying the behaviour of the relevant parts of the physical world gives a way to derive the specification of a control system and also to record precisely the assumptions being made about the world outside the computer.
Resumo:
This paper describes experiments conducted in order to simultaneously tune 15 joints of a humanoid robot. Two Genetic Algorithm (GA) based tuning methods were developed and compared against a hand-tuned solution. The system was tuned in order to minimise tracking error while at the same time achieve smooth joint motion. Joint smoothness is crucial for the accurate calculation of online ZMP estimation, a prerequisite for a closedloop dynamically stable humanoid walking gait. Results in both simulation and on a real robot are presented, demonstrating the superior smoothness performance of the GA based methods.
Resumo:
This paper considers the pros and cons of using behavioural cloning for the development of low-level helicopter automation modules. Over the course of this project several Behavioural cloning approaches have been investigated. The results of the most effective Behavioural cloning approach are then compared to PID modules designed for the same aircraft. The comparison takes into consideration development time, reliability, and control performance. It has been found that Behavioural cloning techniques employing local approximators and a wide state-space coverage during training can produce stabilising control modules in less time than tuning PID controllers. However, performance and reliabity deficits have been found to exist with the Behavioural Cloning, attributable largely to the time variant nature of the dynamics due to the operating environment, and the pilot actions being poor for teaching. The final conclusion drawn here is that tuning PID modules remains superior to behavioural cloning for low-level helicopter automation.
Resumo:
The purpose of the work reported here was to investigate the application of neural control to a common industrial process. The chosen problem was the control of a batch distillation. In the first phase towards deployment, a complex software simulation of the process was controlled. Initially, the plant was modelled with a neural emulator. The neural emulator was used to train a neural controller using the backpropagation through time algorithm. A high accuracy was achieved with the emulator after a large number of training epochs. The controller converged more rapidly, but its performance varied more widely over its operating range. However, the controlled system was relatively robust to changes in ambient conditions.
Resumo:
This paper presents results from the first use of neural networks for the real-time feedback control of high temperature plasmas in a Tokamak fusion experiment. The Tokamak is currently the principal experimental device for research into the magnetic confinement approach to controlled fusion. In the Tokamak, hydrogen plasmas, at temperatures of up to 100 Million K, are confined by strong magnetic fields. Accurate control of the position and shape of the plasma boundary requires real-time feedback control of the magnetic field structure on a time-scale of a few tens of microseconds. Software simulations have demonstrated that a neural network approach can give significantly better performance than the linear technique currently used on most Tokamak experiments. The practical application of the neural network approach requires high-speed hardware, for which a fully parallel implementation of the multi-layer perceptron, using a hybrid of digital and analogue technology, has been developed.