965 resultados para conformational


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (Jørgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF) is a homotrimeric multifunctional proinflammatory cytokine that has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Current therapeutic strategies for targeting MIF focus on developing inhibitors of its tautomerase activity or modulating its biological activities using anti-MIF neutralizing antibodies. Herein we report a new class of isothiocyanate (ITC)-based irreversible inhibitors of MIF. Modification by benzyl isothiocyanate (BITC) and related analogues occurred at the N-terminal catalytic proline residue without any effect on the oligomerization state of MIF. Different alkyl and arylalkyl ITCs modified MIF with nearly the same efficiency as BITC. To elucidate the mechanism of action, we performed detailed biochemical, biophysical, and structural studies to determine the effect of BITC and its analogues on the conformational state, quaternary structure, catalytic activity, receptor binding, and biological activity of MIF. Light scattering, analytical ultracentrifugation, and NMR studies on unmodified and ITC-modified MIF demonstrated that modification of Pro1 alters the tertiary, but not the secondary or quaternary, structure of the trimer without affecting its thermodynamic stability. BITC induced drastic effects on the tertiary structure of MIF, in particular residues that cluster around Pro1 and constitute the tautomerase active site. These changes in tertiary structure and the loss of catalytic activity translated into a reduction in MIF receptor binding activity, MIF-mediated glucocorticoid overriding, and MIF-induced Akt phosphorylation. Together, these findings highlight the role of tertiary structure in modulating the biochemical and biological activities of MIF and present new opportunities for modulating MIF biological activities in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This minireview is meant as an introduction to the following paper. To this end, it presents the general background against which the joint paper should be understood. The first objective of the present paper is thus to clarify some concepts and related terminology, drawing a clear distinction between i) atomic diversity (i.e., atomic-property space), ii) molecular or macromolecular diversity (i.e., molecular- or macromolecular-property spaces), and iii) chemical diversity (i.e., chemical-diversity space). The first refers to the various electronic states an atom can occupy. The second encompasses the conformational and property spaces of a given (macro)molecule. The third pertains to the diversity in structure and properties exhibited by a library or a supramolecular assembly of different chemical compounds. The ground is thus laid for the content of the joint paper, which pertains to case ii, to be placed in its broader chemodiversity context. The second objective of this paper is to point to the concepts of chemodiversity and biodiversity as forming a continuum. Chemodiversity is indeed the material substratum of organisms. In other words, chemodiversity is the material condition for life to emerge and exist. Increasing our knowledge of chemodiversity is thus a condition for a better understanding of life as a process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress-denatured or de novo synthesized and translocated unfolded polypeptides can spontaneously reach their native state without assistance of other proteins. Yet, the pathway to native folding is complex, stress-sensitive and prone to errors. Toxic misfolded and aggregated conformers may accumulate in cells and lead to degenerative diseases. Members of the canonical conserved families of molecular chaperones, Hsp100s, Hsp70/110/40s, Hsp60/CCTs, the small Hsps and probably also Hsp90s, can recognize and bind with high affinity, abnormally exposed hydrophobic surfaces on misfolded and aggregated polypeptides. Binding to Hsp100, Hsp70, Hsp110, Hsp40, Hsp60, CCTs and Trigger factor may cause partial unfolding of the misfolded polypeptide substrates, and ATP hydrolysis can induce further unfolding and release from the chaperone, leading to spontaneous refolding into native proteins with low-affinity for the chaperones. Hence, specific chaperones act as catalytic polypeptide unfolding isomerases, rerouting cytotoxic misfolded and aggregated polypeptides back onto their physiological native refolding pathway, thus averting the onset of protein conformational diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding free energy for the interaction between serines 204 and 207 of the fifth transmembrane helix of the beta(2)-adrenergic receptor (beta(2)-AR) and catecholic hydroxyl (OH) groups of adrenergic agonists was analyzed using double mutant cycles. Binding affinities for catecholic and noncatecholic agonists were measured in wild-type and mutant receptors, carrying alanine replacement of the two serines (S204A, S207A beta(2)-AR), a constitutive activating mutation, or both. The free energy coupling between the losses of binding energy attributable to OH deletion from the ligand and from the receptor indicates a strong interaction (nonadditivity) as expected for a direct binding between the two sets of groups. However, we also measured a significant interaction between the deletion of OH groups from the receptor and the constitutive activating mutation. This suggests that a fraction of the decrease in agonist affinity caused by serine mutagenesis may involve a shift in the conformational equilibrium of the receptor toward the inactive state. Direct measurements using a transient transfection assay confirm this prediction. The constitutive activity of the (S204A, S207A) beta(2)-AR mutant is 50 to 60% lower than that of the wild-type beta(2)-AR. We conclude that S204 and S207 do not only provide a docking site for the agonist, but also control the equilibrium of the receptor between active (R*) and inactive (R) forms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acid-sensing ion channels are members of the epithelial Na(+) channel/degenerin family. They are neuronal nonvoltage-gated Na(+) channels that are activated by extracellular acidification. In this study, we investigated the role of a highly conserved region of the extracellular part of ASIC1a that forms the contact between the finger domain, the adjacent beta-ball, and the upper palm domain in ASIC1a. The finger domain contributes to the pH-dependent gating and is linked via this contact zone to the rest of the protein. We found that mutation to Cys of residues in this region led to decreased channel expression and current amplitudes. Exposure of the engineered Cys residues to Cd(2+) or to charged methane thiosulfonate sulfhydryl reagents further reduced current amplitudes. This current inhibition was not due to changes in acid-sensing ion channel pH dependence or unitary conductance and was likely due to a decrease of the probability of channel opening. For some mutants, the effect of sulfhydryl reagents depended on the pH of exposure in the range 7.4 to 6.8, suggesting that this zone undergoes conformational changes during inactivation. Our study identifies a region in ASIC1a whose integrity is required for normal channel function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that are members of the epithelial Na(+) channel/degenerin family and are transiently activated by extracellular acidification. ASICs in the central nervous system have a modulatory role in synaptic transmission and are involved in cell injury induced by acidosis. We have recently demonstrated that ASIC function is regulated by serine proteases. We provide here evidence that this regulation of ASIC function is tightly linked to channel cleavage. Trypsin cleaves ASIC1a with a similar time course as it changes ASIC1a function, whereas ASIC1b, whose function is not modified by trypsin, is not cleaved. Trypsin cleaves ASIC1a at Arg-145, in the N-terminal part of the extracellular loop, between a highly conserved sequence and a sequence that is critical for ASIC1a inhibition by the venom of the tarantula Psalmopoeus cambridgei. This channel domain controls the inactivation kinetics and co-determines the pH dependence of ASIC gating. It undergoes a conformational change during inactivation, which renders the cleavage site inaccessible to trypsin in inactivated channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is important to characterise the amount of variation on the mammalian Y chromosome in order to assess its potential for use in evolutionary studies. We report very low levels of polymorphism on the Y chromosome of Saudi-Arabian hamadryas baboons, Papio hamadryas hamadryas. We found no segregating sites on the Y, despite sequence analysis of 3 kb noncontiguous intron sequence in 16 males with divergent autosomal microsatellite genotypes, and a further analysis of 1.1 kb intron sequence in 97 males from four populations by SSCP. In addition, we tested seven human-derived Y-linked microsatellites in baboons. Only four of these loci were male-specific and only one was polymorphic in our 97 male sample set. Polymorphism on the Y chromosome of Arabian hamadryas appears to be low compared to other primate species for which data are available (eg humans, chimpanzees and bonobos). Low effective population size (Ne) of paternal genes due to polygyny and female-biased adult sex ratio is a potential reason for low Y chromosome variation in this species. However, low Ne for the Y should be counterbalanced to some extent by the species' atypical pattern of male philopatry and female-biased dispersal. Allelic richness averaged over seven loci was not significantly different between an African and an Arabian population, suggesting that loss of variation during the colonisation of Arabia does not explain low Y variation. Finally, in the absence of nucleotide polymorphism, it is unclear to what extent selection could be responsible for low Y variation in this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last few years, a need to account for molecular flexibility in drug-design methodologies has emerged, even if the dynamic behavior of molecular properties is seldom made explicit. For a flexible molecule, it is indeed possible to compute different values for a given conformation-dependent property and the ensemble of such values defines a property space that can be used to describe its molecular variability; a most representative case is the lipophilicity space. In this review, a number of applications of lipophilicity space and other property spaces are presented, showing that this concept can be fruitfully exploited: to investigate the constraints exerted by media of different levels of structural organization, to examine processes of molecular recognition and binding at an atomic level, to derive informative descriptors to be included in quantitative structure--activity relationships and to analyze protein simulations extracting the relevant information. Much molecular information is neglected in the descriptors used by medicinal chemists, while the concept of property space can fill this gap by accounting for the often-disregarded dynamic behavior of both small ligands and biomacromolecules. Property space also introduces some innovative concepts such as molecular sensitivity and plasticity, which appear best suited to explore the ability of a molecule to adapt itself to the environment variously modulating its property and conformational profiles. Globally, such concepts can enhance our understanding of biological phenomena providing fruitful descriptors in drug-design and pharmaceutical sciences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed "holdases". Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In intestinal secretions, secretory IgA (SIgA) plays an important sentinel and protective role in the recognition and clearance of enteric pathogens. In addition to serving as a first line of defense, SIgA and SIgA x antigen immune complexes are selectively transported across Peyer's patches to underlying dendritic cells in the mucosa-associated lymphoid tissue, contributing to immune surveillance and immunomodulation. To explain the unexpected transport of immune complexes in face of the large excess of free SIgA in secretions, we postulated that SIgA experiences structural modifications upon antigen binding. To address this issue, we associated specific polymeric IgA and SIgA with antigens of various sizes and complexity (protein toxin, virus, bacterium). Compared with free antibody, we found modified sensitivity of the three antigens assayed after exposure to proteases from intestinal washes. Antigen binding further impacted on the immunoreactivity toward polyclonal antisera specific for the heavy and light chains of the antibody, as a function of the antigen size. These conformational changes promoted binding of the SIgA-based immune complex compared with the free antibody to cellular receptors (Fc alphaRI and polymeric immunoglobulin receptor) expressed on the surface of premyelocytic and epithelial cell lines. These data reveal that antigen recognition by SIgA triggers structural changes that confer to the antibody enhanced receptor binding properties. This identifies immune complexes as particular structural entities integrating the presence of bound antigens and adds to the known function of immune exclusion and mucus anchoring by SIgA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adrenoceptors are prototypic members of the superfamily of seven transmembrane domain, G protein-coupled receptors. Study of the properties of several mutationally activated adrenoceptors is deepening understanding of the normal functioning of this ubiquitous class of receptors. The new findings suggest an expansion of the classical ternary complex model of receptor action to include an explicit isomerization of the receptors from an inactive to an active state which couples to the G protein ('allosteric ternary complex model'). This isomerization involves conformational changes which may occur spontaneously, or be induced by agonists or appropriate mutations which abrogate the normal 'constraining' function of the receptor, allowing it to 'relax' into the active conformation. Robert Lefkowitz and colleagues discuss the physiological and pathophysiological implications of these new insights into regulation of receptor activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteins of the Hha/YmoA family co-regulate with H-NS the expression of horizontally acquired genes in Enterobacteria. Systematic mutations of conserved acidic residues in Hha have allowed the identification of D48 as an essential residue for H-NS binding and the involvement of E25. Mutations of these residues resulted in deregulation of sensitive genes in vivo. D48 is only partially solvent accessible, yet it defines the functional binding interface between Hha and H-NS confirming that Hha has to undergo a conformational change to bind H-NS. Exposed acidic residues, such as E25, may electrostatically facilitate and direct the approach of Hha to the positively charged region of H-NS enabling the formation of the final complex when D48 becomes accessible by a conformational change of Hha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are key receptors for extracellular protons. These neuronal nonvoltage-gated Na(+) channels are involved in learning, the expression of fear, neurodegeneration after ischemia, and pain sensation. We have applied a systematic approach to identify potential pH sensors in ASIC1a and to elucidate the mechanisms by which pH variations govern ASIC gating. We first calculated the pK(a) value of all extracellular His, Glu, and Asp residues using a Poisson-Boltzmann continuum approach, based on the ASIC three-dimensional structure, to identify candidate pH-sensing residues. The role of these residues was then assessed by site-directed mutagenesis and chemical modification, combined with functional analysis. The localization of putative pH-sensing residues suggests that pH changes control ASIC gating by protonation/deprotonation of many residues per subunit in different channel domains. Analysis of the function of residues in the palm domain close to the central vertical axis of the channel allowed for prediction of conformational changes of this region during gating. Our study provides a basis for the intrinsic ASIC pH dependence and describes an approach that can also be applied to the investigation of the mechanisms of the pH dependence of other proteins.