922 resultados para coffee cropping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inscriptions: Verso: [stamped] Photograph by Freda Leinwand. [463 West Street, Studio 229G, New York, NY 10014].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this research is to study the commercialization of Fairtrade and Organic coffee in the Bolivia. Fairtrade and Organic coffee are alternative trade systems designed to promote the equitable and environmentally sustainable production of coffee. However, these alternative trading systems often fail to meet these goals. The producers and environment these systems are intended to protect remain marginalized. These failures are due to a number of local institutions. In order to better understand these institutions, this research conducted interviews of various stakeholders including producers, cooperative leaders, organic/Fair Trade certifiers, government agencies and private buyers. All these stakeholders influence the success of the alternative trade systems. By better understanding how these stakeholders impact the commercialization of coffee in Bolivia; new policies can be develop to improve the outcomes of alternative trade, to benefit both producers and the environment. This is especially critical in Bolivia because of the environmentally sensitive area in which coffee is grown, the potentially damaging impact of coca on the region and, the devastating economic impact to farmers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction - Mycotoxin contamination was reported to occur in some food and commodities, such as coffee, particularly due to the presence of toxigenic fungi such as Aspergillus, Penicillium and Fusarium spp. Aspergilli are known to produce high levels of mycotoxins, such as ochratoxin and aflatoxin. Aspergillus ochraceus has been proposed as the major cause of ochratoxin A contamination in coffee beans. Aim of the study - The aim of this work was to evaluate the prevalence of Aspergillus sections Circumdati, Flavi and Fumigati in 28 green coffee samples to be used by Portuguese coffee industry, from Coffea arabica (Arabica coffee) and Coffea canephora (Robusta coffee) species from different origins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction - Fungi are natural coffee contaminants and under certain environmental conditions have the potential to produce toxins. Many studies revealed that the important toxigenic fungal genera (Aspergillus and Penicillium) are natural coffee contaminants, and are present from the field to storage. Aspergilli from the Circumdati and Nigri sections are known to produce high levels of ochratoxin A, a mycotoxin known as nephrotoxic for animals and humans. This work aimed to evaluate fungal distribution and also the prevalence of Aspergillus sections Fumigati, Flavi, Nigri and Circumdati from Coffea arabica (Arabica coffee) and Coffea canephora (Robusta coffee) green samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coffee berries are known to release several volatile organic compounds, among which is the spiroacetal, conophthorin, an attractant for the coffee berry borer Hypothenemus hampei. Elucidating the effects of other spiroacetals released by coffee berries is critical to understanding their chemo-ecological roles in the host discrimination and colonization process of the coffee berry borer, and also for their potential use in the management of this pest. Here, we show that the coffee berry spiroacetals frontalin and 1,6-dioxaspiro [4.5] decane (referred thereafter as brocain), are also used as semiochemicals by the coffee berry borer for host colonization. Bioassays and chemical analyses showed that crowding coffee berry borers from 2 to 6 females per berry, reduced borer fecundity, which appeared to correlate with a decrease in the emission rates of conophthorin and frontalin over time. In contrast, the level of brocain did not vary significantly between borer-uninfested and infested berries. Brocain was attractive at lower doses, but repellent at higher doses while frontalin alone or in a blend was critical for avoidance. Field assays with a commercial attractant comprising a mixture of ethanol and methanol (1:1), combined with frontalin, confirmed the repellent effect of this compound by disrupting capture rates of H. hampei females by 77% in a coffee plantation. Overall, our results suggest that the levels of frontalin and conophthorin released by coffee berries determine the host colonization behaviour of H. hampei, possibly through a 'push-pull' system, whereby frontalin acts as the 'push' (repellent) and conophthorin acting as the 'pull' (attractant). Furthermore, our results reveal the potential use of frontalin as a repellent for management of this coffee pest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unanswered key questions in bark beetle-plant interactions concern host finding in species attacking angiosperms in tropical zones and whether management strategies based on chemical signaling used for their conifer-attacking temperate relatives may also be applied in the tropics. We hypothesized that there should be a common link in chemical signaling mediating host location by these Scolytids. Using laboratory behavioral assays and chemical analysis we demonstrate that the yellow-orange exocarp stage of coffee berries, which attracts the coffee berry borer, releases relatively high amounts of volatiles including conophthorin, chalcogran, frontalin and sulcatone that are typically associated with Scolytinae chemical ecology. The green stage of the berry produces a much less complex bouquet containing small amounts of conophthorin but no other compounds known as bark beetle semiochemicals. In behavioral assays, the coffee berry borer was attracted to the spiroacetals conophthorin and chalcogran, but avoided the monoterpenes verbenone and a-pinene, demonstrating that, as in their conifer-attacking relatives in temperate zones, the use of host and non-host volatiles is also critical in host finding by tropical species. We speculate that microorganisms formed a common basis for the establishment of crucial chemical signals comprising inter-and intraspecific communication systems in both temperate-and tropical-occurring bark beetles attacking gymnosperms and angiosperms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global environmental changes (GEC) such as climate change (CC) and climate variability have serious impacts in the tropics, particularly in Africa. These are compounded by changes in land use/land cover, which in turn are driven mainly by economic and population growth, and urbanization. These factors create a feedback loop, which affects ecosystems and particularly ecosystem services, for example plant-insect interactions, and by consequence agricultural productivity. We studied effects of GEC at a local level, using a traditional coffee production area in greater Nairobi, Kenya. We chose coffee, the most valuable agricultural commodity worldwide, as it generates income for 100 million people, mainly in the developing world. Using the coffee berry borer, the most serious biotic threat to global coffee production, we show how environmental changes and different production systems (shaded and sun-grown coffee) can affect the crop. We combined detailed entomological assessments with historic climate records (from 1929-2011), and spatial and demographic data, to assess GEC's impact on coffee at a local scale. Additionally, we tested the utility of an adaptation strategy that is simple and easy to implement. Our results show that while interactions between CC and migration/urbanization, with its resultant landscape modifications, create a feedback loop whereby agroecosystems such as coffee are adversely affected, bio-diverse shaded coffee proved far more resilient and productive than coffee grown in monoculture, and was significantly less harmed by its insect pest. Thus, a relatively simple strategy such as shading coffee can tremendously improve resilience of agro-ecosystems, providing small-scale farmers in Africa with an easily implemented tool to safeguard their livelihoods in a changing climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The negative effects of climate change are already evident for many of the 25 million coffee farmers across the tropics and the 90 billion dollar (US) coffee industry. The coffee berry borer (Hypothenemus hampei), the most important pest of coffee worldwide, has already benefited from the temperature rise in East Africa: increased damage to coffee crops and expansion in its distribution range have been reported. In order to anticipate threats and prioritize management actions for H. hampei we present here, maps on future distributions of H. hampei in coffee producing areas of East Africa. Using the CLIMEX model we relate present-day insect distributions to current climate and then project the fitted climatic envelopes under future scenarios A2A and B2B (for HADCM3 model). In both scenarios, the situation with H. hampei is forecasted to worsen in the current Coffea arabica producing areas of Ethiopia, the Ugandan part of the Lake Victoria and Mt. Elgon regions, Mt. Kenya and the Kenyan side of Mt. Elgon, and most of Rwanda and Burundi. The calculated hypothetical number of generations per year of H. hampei is predicted to increase in all C. arabica-producing areas from five to ten. These outcomes will have serious implications for C. arabica production and livelihoods in East Africa. We suggest that the best way to adapt to a rise of temperatures in coffee plantations could be via the introduction of shade trees in sun grown plantations. The aims of this study are to fill knowledge gaps existing in the coffee industry, and to draft an outline for the development of an adaptation strategy package for climate change on coffee production. An abstract in Spanish is provided as Abstract S1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer, Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35 degrees C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20-30 degrees C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32 degrees C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1-2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1 degrees C rise in thermal optimum (T(opt)), the maximum intrinsic rate of increase (r(max)) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide (N2O) emissions from soil are often measured using the manual static chamber method. Manual gas sampling is labour intensive, so a minimal sampling frequency that maintains the accuracy of measurements would be desirable. However, the high temporal (diurnal, daily and seasonal) variabilities of N2O emissions can compromise the accuracy of measurements if not addressed adequately when formulating a sampling schedule. Assessments of sampling strategies to date have focussed on relatively low emission systems with high episodicity, where a small number of the highest emission peaks can be critically important in the measurement of whole season cumulative emissions. Using year-long, automated sub-daily N2O measurements from three fertilised sugarcane fields, we undertook an evaluation of the optimum gas sampling strategies in high emission systems with relatively long emission episodes. The results indicated that sampling in the morning between 09:00–12:00, when soil temperature was generally close to the daily average, best approximated the daily mean N2O emission within 4–7% of the ‘actual’ daily emissions measured by automated sampling. Weekly sampling with biweekly sampling for one week after >20 mm of rainfall was the recommended sampling regime. It resulted in no extreme (>20%) deviations from the ‘actuals’, had a high probability of estimating the annual cumulative emissions within 10% precision, with practicable sampling numbers in comparison to other sampling regimes. This provides robust and useful guidance for manual gas sampling in sugarcane cropping systems, although further adjustments by the operators in terms of expected measurement accuracy and resource availability are encouraged. By implementing these sampling strategies together, labour inputs and errors in measured cumulative N2O emissions can be minimised. Further research is needed to quantify the spatial variability of N2O emissions within sugarcane cropping and to develop techniques for effectively addressing both spatial and temporal variabilities simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of protected cropping on the performance of two strawberry cultivars ('Festival' and 'Rubygem') and two breeding lines (Breeding Lines 1 and 2) was studied in subtropical Queensland, Australia over two years. Production in this area is affected by rain, with direct damage to the fruit and the development of fruit diseases before harvest. The main objective of the study was to determine whether plants grown under high plastic tunnels had less rain damage, less disease incidence, and higher yields than plants grown outdoors. Our studies show that marketable yields were up to 40% higher in the plants under the tunnels compared with yields of the plants outdoors. This was mainly because fruit from the plants grown under the tunnels had lower incidences of rain damage and/or grey mould. There were no consistent differences in the relative numbers of small and/or misshaped fruit in the two growing environments. This research highlights the potential of protected cropping for strawberry producers in subtropical areas that receive significant rainfall during the growing season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbicide runoff from cropping fields has been identified as a threat to the Great Barrier Reef ecosystem. A field investigation was carried out to monitor the changes in runoff water quality resulting from four different sugarcane cropping systems that included different herbicides and contrasting tillage and trash management practices. These include (i) Conventional - Tillage (beds and inter-rows) with residual herbicides used; (ii) Improved - only the beds were tilled (zonal) with reduced residual herbicides used; (iii) Aspirational - minimum tillage (one pass of a single tine ripper before planting) with trash mulch, no residual herbicides and a legume intercrop after cane establishment; and (iv) New Farming System (NFS) - minimum tillage as in Aspirational practice with a grain legume rotation and a combination of residual and knockdown herbicides. Results suggest soil and trash management had a larger effect on the herbicide losses in runoff than the physico-chemical properties of herbicides. Improved practices with 30% lower atrazine application rates than used in conventional systems produced reduced runoff volumes by 40% and atrazine loss by 62%. There were a 2-fold variation in atrazine and >10-fold variation in metribuzin loads in runoff water between reduced tillage systems differing in soil disturbance and surface residue cover from the previous rotation crops, despite the same herbicide application rates. The elevated risk of offsite losses from herbicides was illustrated by the high concentrations of diuron (14mugL-1) recorded in runoff that occurred >2.5months after herbicide application in a 1st ratoon crop. A cropping system employing less persistent non-selective herbicides and an inter-row soybean mulch resulted in no residual herbicide contamination in runoff water, but recorded 12.3% lower yield compared to Conventional practice. These findings reveal a trade-off between achieving good water quality with minimal herbicide contamination and maintaining farm profitability with good weed control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protective cropping could be an effective system for growing specialty melons in the dry tropics of North Queensland. The growing system could reduce outdoor risks for production loss, improve fruit quality, increase yield per m2, allow production offseason, and used for supplying niche markets in a segment of the larger melon market in Australia. First evaluations in Giru, Queensland, included seven cultivars of fruit types 'Galia', 'Hami', 'Charentais', small 'Canary', and 'Rockmelon', transplanted July 25, 2013 under a high polyethylene-covered tunnel. Plants were grown at a density of 2.8 plants m-2 in containers filled with volcanic rock and irrigated with a complete nutrient solution. Pruning and trellising was done to a single vertical stem, keeping lateral shoots on the main stem after the 7th leaf node. After bearing small fruit, lateral shoots were cut off after their second or third leaf node. To facilitate insect pollination, a screen window in the tunnel was left partially opened. On November 20 the cultivars had combined marketable yields that ranged from 2.8 to 8.2 fruits m-2 and 3.1 to 7.8 kg m-2. Total soluble solids levels in fruit ranged from 6 to 13 °Brix. Cultivars 'Tempo' ('Galia'), 'Tikal' ('Canary') and 'Sultan' ('Charentais') had fruit yields that were up to 2.6 times greater than yields commonly achieved with field-grown rockmelon crops. Sugar levels in fruits and marketable yields may be increased with changes in fertigation management. Promising results in this first evaluation justify examination of a greater number of genetic materials, in addition to the development of economic feasibility studies and further adaptive research to refine crop recommendations for growing melons in protective cropping systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change and carbon (C) sequestration are a major focus of research in the twenty-first century. Globally, soils store about 300 times the amount of C that is released per annum through the burning of fossil fuels (Schulze and Freibauer 2005). Land clearing and introduction of agricultural systems have led to rapid declines in soil C reserves. The recent introduction of conservation agricultural practices has not led to a reversing of the decline in soil C content, although it has minimized the rate of decline (Baker et al. 2007; Hulugalle and Scott 2008). Lal (2003) estimated the quantum of C pools in the atmosphere, terrestrial ecosystems, and oceans and reported a “missing C” component in the world C budget. Though not proven yet, this could be linked to C losses through runoff and soil erosion (Lal 2005) and a lack of C accounting in inland water bodies (Cole et al. 2007). Land management practices to minimize the microbial respiration and soil organic C (SOC) decline such as minimum tillage or no tillage were extensively studied in the past, and the soil erosion and runoff studies monitoring those management systems focused on other nutrients such as nitrogen (N) and phosphorus (P).