909 resultados para coding complexity
Resumo:
Prism is a modular classification rule generation method based on the ‘separate and conquer’ approach that is alternative to the rule induction approach using decision trees also known as ‘divide and conquer’. Prism often achieves a similar level of classification accuracy compared with decision trees, but tends to produce a more compact noise tolerant set of classification rules. As with other classification rule generation methods, a principle problem arising with Prism is that of overfitting due to over-specialised rules. In addition, over-specialised rules increase the associated computational complexity. These problems can be solved by pruning methods. For the Prism method, two pruning algorithms have been introduced recently for reducing overfitting of classification rules - J-pruning and Jmax-pruning. Both algorithms are based on the J-measure, an information theoretic means for quantifying the theoretical information content of a rule. Jmax-pruning attempts to exploit the J-measure to its full potential because J-pruning does not actually achieve this and may even lead to underfitting. A series of experiments have proved that Jmax-pruning may outperform J-pruning in reducing overfitting. However, Jmax-pruning is computationally relatively expensive and may also lead to underfitting. This paper reviews the Prism method and the two existing pruning algorithms above. It also proposes a novel pruning algorithm called Jmid-pruning. The latter is based on the J-measure and it reduces overfitting to a similar level as the other two algorithms but is better in avoiding underfitting and unnecessary computational effort. The authors conduct an experimental study on the performance of the Jmid-pruning algorithm in terms of classification accuracy and computational efficiency. The algorithm is also evaluated comparatively with the J-pruning and Jmax-pruning algorithms.
Resumo:
An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.
Resumo:
Huntingtin (Htt) protein interacts with many transcriptional regulators, with widespread disruption to the transcriptome in Huntington's disease (HD) brought about by altered interactions with the mutant Htt (muHtt) protein. Repressor Element-1 Silencing Transcription Factor (REST) is a repressor whose association with Htt in the cytoplasm is disrupted in HD, leading to increased nuclear REST and concomitant repression of several neuronal-specific genes, including brain-derived neurotrophic factor (Bdnf). Here, we explored a wide set of HD dysregulated genes to identify direct REST targets whose expression is altered in a cellular model of HD but that can be rescued by knock-down of REST activity. We found many direct REST target genes encoding proteins important for nervous system development, including a cohort involved in synaptic transmission, at least two of which can be rescued at the protein level by REST knock-down. We also identified several microRNAs (miRNAs) whose aberrant repression is directly mediated by REST, including miR-137, which has not previously been shown to be a direct REST target in mouse. These data provide evidence of the contribution of inappropriate REST-mediated transcriptional repression to the widespread changes in coding and non-coding gene expression in a cellular model of HD that may affect normal neuronal function and survival.
Resumo:
HD (Huntington's disease) is a late onset heritable neurodegenerative disorder that is characterized by neuronal dysfunction and death, particularly in the cerebral cortex and medium spiny neurons of the striatum. This is followed by progressive chorea, dementia and emotional dysfunction, eventually resulting in death. HD is caused by an expanded CAG repeat in the first exon of the HD gene that results in an abnormally elongated polyQ (polyglutamine) tract in its protein product, Htt (Huntingtin). Wild-type Htt is largely cytoplasmic; however, in HD, proteolytic N-terminal fragments of Htt form insoluble deposits in both the cytoplasm and nucleus, provoking the idea that mutHtt (mutant Htt) causes transcriptional dysfunction. While a number of specific transcription factors and co-factors have been proposed as mediators of mutHtt toxicity, the causal relationship between these Htt/transcription factor interactions and HD pathology remains unknown. Previous work has highlighted REST [RE1 (repressor element 1)-silencing transcription factor] as one such transcription factor. REST is a master regulator of neuronal genes, repressing their expression. Many of its direct target genes are known or suspected to have a role in HD pathogenesis, including BDNF (brain-derived neurotrophic factor). Recent evidence has also shown that REST regulates transcription of regulatory miRNAs (microRNAs), many of which are known to regulate neuronal gene expression and are dysregulated in HD. Thus repression of miRNAs constitutes a second, indirect mechanism by which REST can alter the neuronal transcriptome in HD. We will describe the evidence that disruption to the REST regulon brought about by a loss of interaction between REST and mutHtt may be a key contributory factor in the widespread dysregulation of gene expression in HD.
Resumo:
Enterprise Architecture (EA) has been recognised as an important tool in modern business management for closing the gap between strategy and its execution. The current literature implies that for EA to be successful, it should have clearly defined goals. However, the goals of different stakeholders are found to be different, even contradictory. In our explorative research, we seek an answer to the questions: What kind of goals are set for the EA implementation? How do the goals evolve during the time? Are the goals different among stakeholders? How do they affect the success of EA? We analysed an EA pilot conducted among eleven Finnish Higher Education Institutions (HEIs) in 2011. The goals of the pilot were gathered from three different stages of the pilot: before the pilot, during the pilot, and after the pilot, by means of a project plan, interviews during the pilot and a questionnaire after the pilot. The data was analysed using qualitative and quantitative methods. Eight distinct goals were recognised by the coding: Adopt EA Method, Build Information Systems, Business Development, Improve Reporting, Process Improvement, Quality Assurance, Reduce Complexity, and Understand the Big Picture. The success of the pilot was analysed statistically using the scale 1-5. Results revealed that goals set before the pilot were very different from those mentioned during the pilot, or after the pilot. Goals before the pilot were mostly related to expected benefits from the pilot, whereas the most important result was to adopt the EA method. Results can be explained by possibly different roles of respondents, which in turn were most likely caused by poor communication. Interestingly, goals mentioned by different stakeholders were not limited to their traditional areas of responsibility. For example, in some cases Chief Information Officers' goals were Quality Assurance and Process Improvement, whereas managers’ goals were Build Information Systems and Adopt EA Method. This could be a result of a good understanding of the meaning of EA, or stakeholders do not regard EA as their concern at all. It is also interesting to notice that regardless of the different perceptions of goals among stakeholders, all HEIs felt the pilot to be successful. Thus the research does not provide support to confirm the link between clear goals and success.
Resumo:
The incidence and severity of light leaf spot epidemics caused by the ascomycete fungus Pyrenopeziza brassicae on UK oilseed rape crops is increasing. The disease is currently controlled by a combination of host resistance, cultural practices and fungicide applications. We report decreases in sensitivities of modern UK P. brassicae isolates to the azole (imidazole and triazole) class of fungicides. By cloning and sequencing the P. brassicae CYP51 (PbCYP51) gene, encoding the azole target sterol 14α-demethylase, we identified two non-synonymous mutations encoding substitutions G460S and S508T associated with reduced azole sensitivity. We confirmed the impact of the encoded PbCYP51 changes on azole sensitivity and protein activity by heterologous expression in a Saccharomyces cerevisiae mutant YUG37::erg11 carrying a controllable promoter of native CYP51 expression. In addition, we identified insertions in the predicted regulatory regions of PbCYP51 in isolates with reduced azole sensitivity. The presence of these insertions was associated with enhanced transcription of PbCYP51 in response to sub-inhibitory concentrations of the azole fungicide tebuconazole. Genetic analysis of in vitro crosses of sensitive and resistant isolates confirmed the impact of PbCYP51 alterations in coding and regulatory sequences on a reduced sensitivity phenotype, as well as identifying a second major gene at another locus contributing to resistance in some isolates. The least sensitive field isolates carry combinations of upstream insertions and non-synonymous mutations, suggesting PbCYP51 evolution is on-going and the progressive decline in azole sensitivity of UK P. brassicae populations will continue. The implications for the future control of light leaf spot are discussed.
Resumo:
Low-power medium access control (MAC) protocols used for communication of energy constraint wireless embedded devices do not cope well with situations where transmission channels are highly erroneous. Existing MAC protocols discard corrupted messages which lead to costly retransmissions. To improve transmission performance, it is possible to include an error correction scheme and transmit/receive diversity. It is possible to add redundant information to transmitted packets in order to recover data from corrupted packets. It is also possible to make use of transmit/receive diversity via multiple antennas to improve error resiliency of transmissions. Both schemes may be used in conjunction to further improve the performance. In this study, the authors show how an error correction scheme and transmit/receive diversity can be integrated in low-power MAC protocols. Furthermore, the authors investigate the achievable performance gains of both methods. This is important as both methods have associated costs (processing requirements; additional antennas and power) and for a given communication situation it must be decided which methods should be employed. The authors’ results show that, in many practical situations, error control coding outperforms transmission diversity; however, if very high reliability is required, it is useful to employ both schemes together.
Resumo:
Greater self-complexity has been suggested as a protective factor for people under stress (Linville, 1985). Two different measures have been proposed to assess individual self-complexity: Attneave’s H statistic (1959) and a composite index of two components of self-complexity (SC; Rafaeli-Mor et al., 1999). Using mood-incongruent recall, i.e., recalling positive events while in negative mood, the present study compared validity of the two measures through reanalysis of Sakaki’s (2004) data. Results indicated that H statistic did not predict performance of mood-incongruent recall. In contrast, greater SC was associated with better mood-incongruent recall even when the effect of H statistic was controlled.
Resumo:
The synthesis and characterization of five new indium selenides, [C9H17N2]3[In5Se8+x(Se2)1−x] (1–2), [C6H12N2]4[C6H14N2]3[In10Se15(Se2)3] (3), [C6H14N2][(C6H12N2)2NaIn5Se9] (4) and [enH2][NH4][In7Se12] (5), are described. These materials were prepared under solvothermal conditions, using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,4-diazabicyclo[2.2.2]octane (DABCO) as structure-directing agents. Compounds 1–4 represent the first examples of ribbons in indium selenides, and 4 is the first example of incorporation of an alkali metal complex. Compounds 1, 2 and 4 contain closely related [In5Se8+x(Se2)1−x]3− ribbons which differ only in their content of (Se2)2− anions. These ribbons are interspaced by organic countercations in 1 and 2, while in 4 they are linked by highly unusual [Na(DABCO)2]+ units into a three-dimensional framework. Compound 3 contains complex ribbons, with a long repeating sequence of ca. 36 Å, and 4 is a non-centrosymmetric three-dimensional framework, formed as a consequence of the decomposition of DABCO into ethylenediamine (en) and ammonia.
Resumo:
Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.
Resumo:
The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance of including a more realistic treatment of aerosol–cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex aerosol schemes.
Resumo:
Traditional dictionary learning algorithms are used for finding a sparse representation on high dimensional data by transforming samples into a one-dimensional (1D) vector. This 1D model loses the inherent spatial structure property of data. An alternative solution is to employ Tensor Decomposition for dictionary learning on their original structural form —a tensor— by learning multiple dictionaries along each mode and the corresponding sparse representation in respect to the Kronecker product of these dictionaries. To learn tensor dictionaries along each mode, all the existing methods update each dictionary iteratively in an alternating manner. Because atoms from each mode dictionary jointly make contributions to the sparsity of tensor, existing works ignore atoms correlations between different mode dictionaries by treating each mode dictionary independently. In this paper, we propose a joint multiple dictionary learning method for tensor sparse coding, which explores atom correlations for sparse representation and updates multiple atoms from each mode dictionary simultaneously. In this algorithm, the Frequent-Pattern Tree (FP-tree) mining algorithm is employed to exploit frequent atom patterns in the sparse representation. Inspired by the idea of K-SVD, we develop a new dictionary update method that jointly updates elements in each pattern. Experimental results demonstrate our method outperforms other tensor based dictionary learning algorithms.
Resumo:
To mitigate the inter-carrier interference (ICI) of doubly-selective (DS) fading channels, we consider a hybrid carrier modulation (HCM) system employing the discrete partial fast Fourier transform (DPFFT) demodulation and the banded minimum mean square error (MMSE) equalization in this letter. We first provide the discrete form of partial FFT demodulation, then apply the banded MMSE equalization to suppress the residual interference at the receiver. The proposed algorithm has been demonstrated, via numerical simulations, to be its superior over the single carrier modulation (SCM) system and circularly prefixed orthogonal frequency division multiplexing (OFDM) system over a typical DS channel. Moreover, it represents a good trade-off between computational complexity and performance.