948 resultados para charge transfer luminescence
Resumo:
The oxalato complexes, VOC2O4·2H2O and VOC2O4·4H2O, are described. Their magnetic moments correspond to one unpaired electron showing the tetravalency of vanadium. They are monomeric in aqueous solution. Thermal studies suggest VO2 formation when the compounds are decomposed. Infrared spectra reveal covalent bonding between the vanadium and the oxalate group and the coordinated water. The tetrahydrate has also some lattice held water. The weak band at 780 mμ and a shoulder at 600 mμ are due to d ↔ d transitions and the absorption in the ultra violet is due to charge transfer within the VO2+ group. The dihydrate is assigned a stable five co-ordinated pyramidal structure; while the tetrahydrate, a distorted octahedron with one water molecule loosely bound along the V---O axis and the other outside the co-ordination sphere.
Resumo:
Hydrolysis of beta-lactam antibiotics by beta-lactamases (e. g., metallo-beta-lactamase, m beta l) is one of the major bacterial defense systems. These enzymes can catalyze the hydrolysis of a variety of antibiotics including the latest generation of cephalosporins, cephamycins and imipenem. It is shown in this paper that the thiol/thione moieties eliminated from certain cephalosporins by m beta l-mediated hydrolysis readily react with molecular iodine to produce ionic compounds having S-I bonds. While the reaction of MTT with iodine produced the corresponding disulfide, MDT and DMETT produced the charge-transfer complexes MDT-I-2 and DMETT-I-2, respectively. Addition of two equivalents of I-2 to MDT produced a novel cationic complex having an almost linear S-I+-S moiety and I-5(-) counter anion.However, this reaction appears to be highly solvent dependent. When the reaction of MDT with I2 was carried out in water, the reaction produced a monocation having I-5(-), indicating the reactivity of MDT toward I2 is very similar to that of the most commonly used antithyroid drug methimazole (MMI). In contrast to MMI, MDT and DMETT, the triazine-based compound MTDT acts as a weak donor toward iodine. (C)2010 Elsevier Ltd. All rights reserved.
Resumo:
The charge-transfer complexes of p-dichlorobenzene (PDB) with some aromatic π acceptors such as m-nitrobenzaldehyde (MNB), picric acid (PA), p-nitrobenzoic acid (PNB), and m-dinitrobenzene (MDNB) were prepared by slowly adding the acceptor to the molten donor and then cooling the mass to 15°C. The NQR frequencies of these complexes were measured at room temperature. Contrary to the theoretical prediction, the NQR shift is positive, indicating that the NQR shift in donor-acceptor complexes is indirectly related to the charge-transfer interaction. Bond properties are discussed in terms of frequency shift.
Resumo:
Current-potential relationships are derived for porous electrode systems following a homogeneous model and whenadsorbed intermediates participate in the electrode reaction. Limiting Tafel slopes were deduced and compared with thecorresponding behavior on planar electrode systems. The theoretical results showed doubling of Tafel slopes when theslow-step is a charge-transfer reaction and a nonlogarithmic current-voltage behavior when the slow-step is a chemical reaction.Comparison of the experimental results with theory for the case of oxygen reduction on carbon surfaces in alkalinemedia indicates that a slow chemical reaction following the initial charge-transfer reaction to be the likely rate-controllingstep. Theoretical relationships are utilized to determine the exchange current density and the surface coverage by the adsorbedintermediates during the course of oxygen reduction from alkaline solutions on "carbon." Tafel slope measurementson planar and porous electrodes for the same reaction are suggested as one of the diagnostic criteria for elucidatingthe mechanistic pathways of electrochemical reactions.
Resumo:
The systems formalism is used to obtain the interfacial concentration transients for power-law current input at an expanding plane electrode. The explicit results for the concentration transients obtained here pertain to arbitrary homogeneous reaction schemes coupled to the oxidant and reductant of a single charge-transfer step and the power-law form without and with a preceding blank period (for two types of power-law current profile, say, (i) I(t) = I0(t−t0)q for t greater-or-equal, slanted t0, I(t) = 0 for t < t0; and (ii) I(t) = I0tq for t greater-or-equal, slanted t0, I(t) = 0 for t < t0). Finally the potential transients are obtained using Padé approximants. The results of Galvez et al. (for E, CE, EC, aC) (J. Electroanal. Chem., 132 (1982) 15; 146 (1983) 221, 233, 243), Molina et al. (for E) (J. Electroanal. Chem., 227 (1987) 1 and Kies (for E) (J. Electroanal. Chem., 45 (1973) 71) are obtained as special cases.
Resumo:
The discrepancies between the non-interacting models and experimental results for conjugated systems is highlighted in this brief review. The interacting model hamiltonians correctly give the forbidden singlet state below the optical gap in polyenes and also explain both the nonvanishing optical gap in polyacetylenes and the vanishing optical gap in symmetric cyanine dyes. The negative spin densities in polyene radicals is also understood in terms of a correlated picture. The role of electron-electron interactions in other strongly correlated systems, such as polydiacetylene and mixed and segregated stack charge transfer solids, are also briefly discussed.
Resumo:
A theoretical analysis of the external heavy atom effect of a halogen atom on the radiative rate constant of phosphorescence is examined as a function of position of a bromine atom or atoms relative to a naphthalene or a benzene chromophore for a series of mono- and dibromo-, naphtho-, and benzonorbornenes. The theoretical results are then compared to experimentaldata and lead to the conclusion that the enhancement of the phosphorescence process takes place through the second-ordermixing of the triplet states of the chromophore with the singlet charge transfer states arising primarily from an electron transferfrom the orbitals of the heavy atom perturber to the unfilled x* orbitals of the chromophore.
Resumo:
A new series of molybdenum cluster compounds of the general formula AxMo5As4(A = Cu, Al, or Ga) has been synthesized. They are isostructural with the host Mo5As4(Ti5Te4-type) consisting of trans-vertex shared Mo6 octahedral chains. Investigations by X-ray photoelectron and Auger electron spectroscopies revealed a charge transfer from A to Mo5As4 in AxMo5As4. The occurrence of metallic (CuxMo5As4) and non-metallic (Al2Mo5As4 and Ga2Mo5As4) properties in this isostructural series of solids is consistent with the electronic structure of Ti5Te4-type solids involving M–M bonding in the cluster chains.
Resumo:
The electrochemical properties of the film-covered anode/solution interface in the magnesium/ manganese dioxide dry cell have been evaluated. The most plausible electrical equivalent circuit description of the Mg/solution interface with the passive film intact, has been identified. These results are based on the analysis of ac impedance and voltage transient measurements made on the dry cell under conditions which cause no damage to the protective passive film on the anode. The study demonstrates the complementary character of impedance and transient measurements when widely different frequency ranges are sampled in each type of investigation. The values and temperature dependence of the anode-film resistance, film capacitance, double-layer capacitance and charge-transfer resistance of the film-covered magnesium/solution interface have been determined. The magnitude of these values and its implications in understanding the important performance aspects of the magnesium/manganese dioxide dry cell are discussed. The study may be extended, in principle, to Li, Al and Ca batteries.
Resumo:
The electrochemical properties of the film-covered anode/solution interface in the magnesium/ manganese dioxide dry cell have been evaluated. The most plausible electrical equivalent circuit description of the Mg/solution interface with the passive film intact, has been identified. These results are based on the analysis of ac impedance and voltage transient measurements made on the dry cell under conditions which cause no damage to the protective passive film on the anode. The study demonstrates the complementary character of impedance and transient measurements when widely different frequency ranges are sampled in each type of investigation. The values and temperature dependence of the anode-film resistance, film capacitance, double-layer capacitance and charge-transfer resistance of the film-covered magnesium/solution interface have been determined. The magnitude of these values and its implications in understanding the important performance aspects of the magnesium/manganese dioxide dry cell are discussed. The study may be extended, in principle, to Li, Al and Ca batteries.
Resumo:
The study of electrochemical reduction of Cu(II)-EDTA system by phase sensitive a.c. impedance method at dropping mercury electrode reveals several interesting features. The complex plane polarograms exhibit loop like shape in contrast to the classical zinc ion reduction where crest like shape is found. Again, the relative placement of peaks of in-phase and quadrature components, and the relative placement of portions before and after the peaks of complex plane polarograms are different from that of zinc ion reduction. The complex plane plots suggest that electrochemical reduction of Cu-EDTA is charge transfer controlled.
Resumo:
The effect of pressure on non-ohmic conduction and electrical switching in the charge transfer complex benzidine-DDQ has been studied up to a pressure of 7·66 GPa at a temperature of 300K. Pulsed I-V measurements reveal heating contribution to non-ohmicity and switching. At high electric fields (∼ 3 × 103 V/cm), the sample switches from high resistance OFF state of several kiloohms to low resistance ON state of several ohms. Temperature dependence of conductivity of ON state show semiconducting behaviour with very low activation energy.
Resumo:
The high-temperature superconductors are complex oxides, generally containing two-dimensional CuO2 sheets. Various families of the cuprate superconductors are described, paying special attention to aspects related to oxygen stoichiometry, phase stability, synthesis and chemical manipulation of charge carriers. Other aspects discussed are chemical applications of cuprates, possibly as gas sensors and copper-free oxide superconductors. All but the substituted Nd and Pr cuprates are hole-superconductors. Several families of cuprates show a nearly constant n(h) at maximum T(c). Besides this universality, the cuprates exhibit a number of striking common features. Based on Cu(2p) photoemission studies, it is found that the Cu-O charge-transfer energy, DELTA, and the Cu(3d)-O(2p) hybridization strength, t(pd), are key factors in the superconductivity of cuprates. The relative intensity of the satellite in the Cu(2p) core-level spectra, the polarizability of the CuO2 sheets as well as the hole concentration are related to DELTA/t(pd). These chemical bonding factors have to be explicitly taken into account in any model for superconductivity of the cuprates.
Resumo:
We report the absorption spectra, oscillator strengths, ground state and excited state dipole moments, and molecular second order polarizability coefficients (βCT) due to donor—acceptor charge transfer in four trisubstituted ethylenes, namely 1,1-bisdimethylamino-2-nitroethylene, 1,1-bispyrolidino-2-nitroethylene, 1,1-bispiperidino-2-nitroethylene and 1,1-bismorpholino-2-nitroethylene. The results are compared with that of trans-N,N-dimethylamino-nitroethylene, which has a large βCT. The powder second harmonic generation (SHG) intensity of all these molecules is also measured and only 1,1-bispiperidino-2-nitroethylene is found to possess an efficiency of 20% of that of urea under the same conditions. The SHG efficiency of this compound and deficiency in the other molecules in the powdered state is discussed in terms of their arrangements in the unit cell. The crystal structure of the active molecule is also presented and the structure—property relationship is critically examined in all these molecules.
Resumo:
Diruthenium(II1) compounds, Ru20(02CAr)2(MeCN)4(PPh3)2(C104)(z1~) Hazn0d R U ~ O ( O ~ C A ~ ) ~(2() P(PA~r ~= )P~h,C6H4-p-OMe), were prepared by reacting R U ~ C I ( O ~ CaAnd~ P)P~h 3 in MeCN and characterized by analytical and spectral data. The molecular structures of 1 with Ar = Ph and of 2 with Ar = C&p-OMe were determined by X-ray crystallography. Crystal data for Ru~~(~~CP~)~(M~CN),(PP~(~la)):~ m(oCnIoc~lin,ic), n~/~cH, ~a O= 27.722 (3) A, b = 10.793 (2) A, c = 23.445 ( 2 )A , fi = 124.18 (l)', V = 5803 A3, and 2 = 4. Cr stal data for Ru~O(O~CC~H~-~-O(M2b~): )o~rth(orPhoPm~bi~c, )Pn~n a, a = 22.767 (5) A, b = 22.084 (7) A, c = 12.904 (3) 1, V = 6488 AS; and 2 = 4. Both 1 and 2 have an (Ruz0(02CAr)z2t1 core that is analogous to the diiron core present in the oxidized form of the nonheme respiratory protein hemerythrin. The Ru-Ru distances of 3.237 (1) and 3.199 ( I ) A observed in 1 and 2, respectively, are similar to the M-M distances known in other model systems. The essentially diamagnetic nature of 1 and 2 is due to the presence of two strongly interacting t22 Ru"' centers. The intense colors of 1 (blue) and 2 (purple) are due to the charge-transfer transition involving an ( R ~ ~ ( f i - 0m)o~ie~ty.) The presence of labile MeCN and carboxylato ancillary ligands in I and 2, respectively, makes these systems reactive toward amine and heterocyclic bases.