661 resultados para cereal matinal
Resumo:
Epidemiological studies and healthy eating guidelines suggest a positive correlation between ingestion of whole grain cereal and food rich in fibre with protection from chronic diseases. The prebiotic potential of whole grains may be related, however, little is known about the microbiota modulatory capability of oat grain or the impact processing has on this ability. In this study the fermentation profile of whole grain oat flakes, processed to produce two different sized flakes (small and large), by human faecal microbiota was investigated in vitro. Simulated digestion and subsequent fermentation by gut bacteria was investigated using pH controlled faecal batch cultures inoculated with human faecal slurry. The different sized oat flakes, Oat 23’s (0.53–0.63 mm) and Oat 25’s/26’s (0.85–1.0 mm) were compared to oligofructose, a confirmed prebiotic, and cellulose, a poorly fermented carbohydrate. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation, and short chain fatty acid (SCFA) production monitored by gas chromatography. Significant changes in total bacterial populations were observed after 24 h incubation for all substrates except Oat 23’s and cellulose. Oats 23’s fermentation resulted in a significant increase in the Bacteroides–Prevotella group. Oligofructose and Oats 25’s/26’s produced significant increases in Bifidobacterium in the latter stages of fermentation while numbers declined for Oats 23’s between 5 h and 24 h. This is possibly due to the smaller surface area of the larger flakes inhibiting the simulated digestion, which may have resulted in increased levels of resistant starch (Bifidobacterium are known to ferment this dietary fibre). Fermentation of Oat 25’s/26’s resulted in a propionate rich SCFA profile and a significant increase in butyrate, which have both been linked to benefiting host health. The smaller sized oats did not produce a significant increase in butyrate concentration. This study shows for the first time the impact of oat grain on the microbial ecology of the human gut and its potential to beneficially modulate the gut microbiota through increasing Bifidobacterium population.
Resumo:
Achieving quality requires the selection of varieties suited to prevailing environments and cropping systems. For well-adapted varieties, yield and quality can still be affected strongly by the weather and by agronomic interventions. Some of the strongest influences are heat and drought during grain filling, the availability of nitrogen and sulphur, the control of leaf and ear diseases, and the control of lodging. The effects of these and other factors are described, particularly in relation to the ‘point of sale measures’ for wheat grain.
Resumo:
Nineteen wheat cultivars, released from 1934 to 2000, were grown at two organic and two non-organic sites in each of 3 years. Assessments included grain yield, grain protein concentration, protein yield, disease incidence and green leaf area. The superiority of each cultivar (the sum of the squares of the differences between its mean in each environment and the mean of the best cultivar there, divided by twice the number of environments; CS) was calculated for yield, grain protein concentration and protein yield, and ranked in each environment. The yield and grain protein concentration CS were more closely correlated with cultivar release date at the non-organic sites than at organic sites. This difference may be attributed to higher yield levels with larger differences among cultivars at the non-organic sites, rather than to improved stability (i.e. similar ranks) across sites. The significant difference in the correlation of protein yield CS and cultivar age between organic and non-organic sites would support evidence that the ability to take up mineral nitrogen (N) compared to soil N has been a component of the selection conditions of more modern cultivars (released after 1989). This is supported by assessment of green leaf area (GLA), where more modern cultivars in the non-organic systems had greater late-season GLA, a trend that was not identified in organic conditions. This effect could explain the poor correlation between age and protein yield CS in organic compared to non-organic conditions where modern cultivars are selected to benefit from later nitrogen (N) availability which includes the spring nitrogen applications tailored to coincide with peak crop demand. Under organic management, N release is largely based on the breakdown of fertility-building crops incorporated (ploughed-in) in the previous autumn. The release of nutrients from these residues is dependent on the soil conditions, which includes temperature and microbial populations, in addition to the potential leaching effect of high winter rainfall in the UK. In organic cereal crops, early resource capture is a major advantage for maximizing the utilization of nutrients from residue breakdown. It is concluded that selection of cultivars under conditions of high agrochemical inputs selects for cultivars that yield well under maximal conditions in terms of nutrient availability and pest, disease and weed control. The selection conditions for breeding have a tendency to select cultivars which perform relatively better in non-organic compared to organic systems.
Resumo:
Convincing lipid-lowering effects of the fructooligosaccharide inulin have been demonstrated in animals, yet attempts to reproduce similar effects in humans have generated conflicting results. This may be because of the much lower doses used in humans as a result of the adverse gastrointestinal symptoms exhibited by most subjects consuming daily doses in excess of 30 g. Two studies that fed either oligofructose (20 g/d) or inulin (14 g/d) observed no effect on fasting total, LDL or HDL cholesterol, or serum triglycerides. Two other studies that fed inulin either in a breakfast cereal (9 g/d) or as a powdered addition to beverages and meals (10 g/d) reported similar reductions in fasting triglycerides (227 and 219%, respectively). In one of these studies, total and LDL cholesterol concentrations were also modestly reduced (5 and 7%, respectively). Because animal studies have identified inhibition of hepatic fatty acid synthesis as the major site of action for the triglyceride-lowering effects of inulin, and because this pathway is relatively inactive in humans unless a high carbohydrate diet is fed, future attempts to demonstrate lipid-lowering effects of inulin should consider the nature of the background diet as a determinant of response.
Resumo:
We review current knowledge of the most abundant sugars, sucrose, maltose, glucose and fructose, in the world's major crop plants. The sucrose-accumulating crops, sugar beet and sugar cane, are included, but the main focus of the review is potato and the major cereal crops. The production of sucrose in photosynthesis and the inter-relationships of sucrose, glucose, fructose and other metabolites in primary carbon metabolism are described, as well as the synthesis of starch, fructan and cell wall polysaccharides and the breakdown of starch to produce maltose. The importance of sugars as hormone-like signalling molecules is discussed, including the role of another sugar, trehalose, and the trehalose biosynthetic pathway. The Maillard reaction, which occurs between reducing sugars and amino acids during thermal processing, is described because of its importance for colour and flavour in cooked foods. This reaction also leads to the formation of potentially harmful compounds, such as acrylamide, and is attracting increasing attention as food producers and regulators seek to reduce the levels of acrylamide in cooked food. Genetic and environmental factors affecting sugar concentrations are described.
Resumo:
On 16 UK livestock holdings within pastoral landscapes, we investigated the provision of plant and invertebrate resources for farmland birds in spring barley and winter wheat cereal-based whole crop silages as alternatives to maize and grass silages. The benefits of low input barley systems were also investigated; barley fields were subjected to two separate herbicide sub-treatments on a split-field design (high input broad-spectrum or low input narrow spectrum herbicides). The abundance of plant resources and invertebrates was assessed for three growing seasons during summer and winter for each crop type. The study clearly demonstrated the value of spring barley for the provision of plant resources when compared to the other silage cropping systems, whilst invertebrate responses were variable. No differences in plant and invertebrate resources were found between the barley treatments. Throughout the year, forage maize afforded the lowest provision of resources for farmland birds, and because it is likely that maize will continue to be grown in pastoral areas, the value of this habitat needs to be improved if farmland birds are to benefit. To provide plant and invertebrate resources for farmland birds in pastoral landscapes we strongly advocate the growing of spring sown barley whole-crop silage followed by over-wintering stubbles. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Research on arable sandy loam and silty clay loam soils on 4° slopes in England has shown that tramlines (i.e. the unseeded wheeling areas used to facilitate spraying operations in cereal crops) can represent the most important pathway for phosphorus and sediment loss from moderately sloping fields. Detailed monitoring over the October–March period in winters 2005–2006 and 2006–2007 included event-based sampling of surface runoff, suspended and particulate sediment, and dissolved and particulate phosphorus from hillslope segments (each ∼300–800 m2) established in a randomized block design with four replicates of each treatment at each of two sites on lighter and heavier soils. Experimental treatments assessed losses from the cropped area without tramlines, and from the uncropped tramline area, and were compared to losses from tramlines which had been disrupted once in the autumn with a shallow tine. On the lighter soil, the effects of removal or shallow incorporation of straw residues was also determined. Research on both sandy and silty clay loam soils across two winters showed that tramline wheelings represented the dominant pathway for surface runoff and transport of sediment, phosphorus and nitrogen from cereal crops on moderate slopes. Results indicated 5·5–15·8% of rainfall lost as runoff, and losses of 0·8–2·9 kg TP ha−1 and 0·3–4·8 t ha−1 sediment in tramline treatments, compared to only 0·2–1·7% rainfall lost as runoff, and losses of 0·0–0·2 kg TP ha−1 and 0·003–0·3 t ha−1 sediment from treatments without tramlines or those where tramlines had been disrupted. The novel shallow disruption of tramline wheelings using a tine once following the autumn spray operation consistently and dramatically reduced (p < 0·001) surface runoff and loads of sediment, total nitrogen and total phosphorus to levels similar to those measured in cropped areas between tramlines. Results suggest that options for managing tramline wheelings warrant further refinement and evaluation with a view to incorporating them into spatially-targeted farm-level management planning using national or catchment-based agri-environment policy instruments aimed at reducing diffuse pollution from land to surface water systems. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
A UK field experiment compared a complete factorial combination of three backgrounds (cvs Mercia, Maris Huntsman and Maris Widgeon), three alleles at the Rht-B1 locus as Near Isogenic Lines (NILs: rht-B1a (tall), Rht-B1b (semi-dwarf), Rht-B1c (severe dwarf)) and four nitrogen (N) fertilizer application rates (0, 100, 200 and 350 kg N/ha). Linear+exponential functions were fitted to grain yield (GY) and nitrogen-use efficiency (NUE; GY/available N) responses to N rate. Averaged over N rate and background Rht-B1b conferred significantly (P<0.05) greater GY, NUE, N uptake efficiency (NUpE; N in above ground crop / available N) and N utilization efficiency (NUtEg; GY / N in above ground crop) compared with rht-B1a and Rht-B1c. However the economically optimal N rate (Nopt) for N:grain price ratios of 3.5:1 to 10:1 were also greater for Rht-B1b, and because NUE, NUpE and NUtE all declined with N rate, Rht-Blb failed to increase NUE or its components at Nopt. The adoption of semi-dwarf lines in temperate and humid regions, and the greater N rates that such adoption justifies economically, greatly increases land-use efficiency, but not necessarily, NUE.
Resumo:
Near isogenic lines varying for alleles for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) in cv. Mercia (2005/6 to 2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cvs Maris Huntsman and Maris Widgeon (2007/8 to 2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) were compared at one field site, but within different systems (‘organic’, O, 2005/6 to 2007/8 v ‘intensive’, I, 2005/6 to 2010/11). Further experiments at the site (2006/7 to 2008/9) compared 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. Gibberellin (GA) insensitive dwarfing alleles (Rht-B1b; Rht-B1c; Rht-D1b; Rht-D1c) could reduce α-amylase activity and/or increase Hagberg falling number (HFN) but effects depended greatly on system, background and season. Only Rht-B1c increased grain dormancy despite producing plants taller than Rht-D1c. The GA-sensitive Rht8c+Ppd-D1a in Mercia was associated with reduced HFN but analysis of the DH population suggested this was more closely linked with Ppd-D1a, rather than Rht8c. The severe GA-sensitive dwarfing allele Rht12 was associated with reduced HFN. Instability in HFN over season tended to increase with degree of dwarfing. There was a negative association between mean grain weight and HFN that was in addition to effects of Rht and Ppd-D1 allele.
Resumo:
Three batches of oats were extruded under four combinations of process temperature (150 or 180 °C) and process moisture (14.5 and 18%). Two of the extrudates were evaluated by a sensory panel, and three were analyzed by GC-MS. Maillard reaction products, such as pyrazines, pyrroles, furans, and sulfur-containing compounds, were found in the most severely processed extrudates (high-temperature, low-moisture). These extrudates were also described by the assessors as having toasted cereal attributes. Lipid degradation products, such as alkanals, 2-alkenals, and 2,4-alkadienals, were found at much higher levels in the extrudates of the oat flour that had been debranned. It contained lower protein and fiber levels than the others and showed increased lipase activity. Extrudates from these samples also had significantly lower levels of Maillard reaction products that correlated, in the sensory analysis, with terms such as stale oil and oatmeal. Linoleic acid was added to a fourth oat flour to simulate the result of increased lipase activity, and GC-MS analysis showed both an increase in lipid degradation products and a decrease in Maillard reaction products.
Resumo:
Striga hermonthica and Striga asiatica are obligate root parasites that cause serious problems in the production of staple cereal crops in Africa. Because of the high levels of infestation, there is an urgent need to control these weeds. A potentially useful control option is depletion of the soil seed bank by suicidal germination, which involves germination of the seeds in the absence of host plants. Suicidal germination is often mentioned in the literature, but not considered realistic, because of the alleged untimely decomposition of the stimulants in the soil, despite the fact that some encouraging results were reported around 1980. The alleged instability has prevented active research in this direction for the past 20–25 years. Five newly designed synthetic germination stimulants were investigated as candidates for suicidal germination. An important issue is the persistence of these stimulants in soil. Packets with Striga spp. seeds were put in pots with soil and then treated with aqueous solutions of the stimulants. All five compounds induced germination under these conditions, with percentages varying between 18% and 98% depending on stimulant and species. There were no noticeable signs of decomposition of the stimulants. The best performing stimulant is derived from 1-tetralone. We conclude that synthetic strigolactones analogues have excellent prospects for use in combating parasitic weeds. Further testing will be needed to evaluate whether such prospects can be realised in the field.
Resumo:
BACKGROUND/OBJECTIVES: Phytoestrogens are estradiol-like natural compounds found in plants that have been associated with protective effects against chronic diseases, including some cancers, cardiovascular diseases and osteoporosis. The purpose of this study was to estimate the dietary intake of phytoestrogens, identify their food sources and their association with lifestyle factors in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. SUBJECTS/METHODS: Single 24-hour dietary recalls were collected from 36 037 individuals from 10 European countries, aged 35–74 years using a standardized computerized interview programe (EPIC-Soft). An ad hoc food composition database on phytoestrogens (isoflavones, lignans, coumestans, enterolignans and equol) was compiled using data from available databases, in order to obtain and describe phytoestrogen intakes and their food sources across 27 redefined EPIC centres. RESULTS: Mean total phytoestrogen intake was the highest in the UK health-conscious group (24.9 mg/day in men and 21.1 mg/day in women) whereas lowest in Greece (1.3 mg/day) in men and Spain-Granada (1.0 mg/day) in women. Northern European countries had higher intakes than southern countries. The main phytoestrogen contributors were isoflavones in both UK centres and lignans in the other EPIC cohorts. Age, body mass index, educational level, smoking status and physical activity were related to increased intakes of lignans, enterolignans and equol, but not to total phytoestrogen, isoflavone or coumestan intakes. In the UK cohorts, the major food sources of phytoestrogens were soy products. In the other EPIC cohorts the dietary sources were more distributed, among fruits, vegetables, soy products, cereal products, non-alcoholic and alcoholic beverages. CONCLUSIONS: There was a high variability in the dietary intake of total and phytoestrogen subclasses and their food sources across European regions.
Resumo:
Bran is hygroscopic and competes actively for water with other key components in baked cereal products like starch and gluten. Thermogravimetric analysis (TGA) of flour–water mixtures enriched with bran at different incorporation levels was performed to characterise the release of compartmentalised water. TGA investigations showed that the presence of bran increased compartmentalised water, with the measurement of an increase of total water loss from 58.30 ± 1.93% for flour only systems to 71.80 ± 0.37% in formulations comprising 25% w/w bran. Deconvolution of TGA profiles showed an alteration of the distribution of free and bound water, and its interaction with starch and gluten, within the formulations. TGA profiles showed that water release from bran-enriched flour is a prolonged event with respect to the release from non-enriched flour, which suggests the possibility that bran may interrupt the normal characteristic processes of texture formation that occur in non-enriched products.
Resumo:
The Mitigation Options for Phosphorus and Sediment (MOPS) project investigated the effectiveness of within-field control measures (tramline management, straw residue management, type of cultivation and direction, and vegetative buffers) in terms of mitigating sediment and phosphorus loss from winter-sown combinable cereal crops using three case study sites. To determine the cost of the approaches, simple financial spreadsheet models were constructed at both farm and regional levels. Taking into account crop areas, crop rotation margins per hectare were calculated to reflect the costs of crop establishment, fertiliser and agro-chemical applications, harvesting, and the associated labour and machinery costs. Variable and operating costs associated with each mitigation option were then incorporated to demonstrate the impact on the relevant crop enterprise and crop rotation margins. These costs were then compared to runoff, sediment and phosphorus loss data obtained from monitoring hillslope-length scale field plots. Each of the mitigation options explored in this study had potential for reducing sediment and phosphorus losses from arable land under cereal crops. Sediment losses were reduced from between 9 kg ha−1 to as much as 4780 kg ha−1 with a corresponding reduction in phosphorus loss from 0.03 kg ha−1 to 2.89 kg ha−1. In percentage terms reductions of phosphorus were between 9% and 99%. Impacts on crop rotation margins also varied. Minimum tillage resulted in cost savings (up to £50 ha−1) whilst other options showed increased costs (up to £19 ha−1 for straw residue incorporation). Overall, the results indicate that each of the options has potential for on-farm implementation. However, tramline management appeared to have the greatest potential for reducing runoff, sediment, and phosphorus losses from arable land (between 69% and 99%) and is likely to be considered cost-effective with only a small additional cost of £2–4 ha−1, although further work is needed to evaluate alternative tramline management methods. Tramline management is also the only option not incorporated within current policy mechanisms associated with reducing soil erosion and phosphorus loss and in light of its potential is an approach that should be encouraged once further evidence is available.
Resumo:
The assessment of the potential landscape impacts of the latest Common Agricultural Policy reforms constitutes a challenge for policy makers and it requires the development of models that can reliably project the likely spatial distribution of land uses. The aim of this study is to investigate the impact of 2003 CAP reforms to land uses and rural landscapes across England. For this purpose we modified an existing economic model of agriculture, the Land-Use Allocation Model (LUAM) to provide outputs at a scale appropriate for informing a semi-quantitative landscape assessment at the level of ‘Joint Character Areas’ (JCAs). Overall a decline in the cereal and oilseed production area is projected but intensive arable production will persist in specific locations (East of England, East Midlands and South East), having ongoing negative effects on the character of many JCAs. The impacts of de-coupling will be far more profound on the livestock sector; extensification of production will occur in traditional mixed farming regions (e.g. the South West), a partial displacement of cattle by sheep in the upland regions and an increase in the sheep numbers is expected in the lowlands (South East, Eastern and East Midlands). This extensification process will affect positively those JCAs of mixed farming conditions, but it will have negative impacts on the JCAs of historically low intensity farming (e.g. the uplands of north-west) because they will suffer from under-management and land idling. Our analysis shows that the territorialisation between intensively and extensively agricultural landscapes will continue.