954 resultados para cephalosporin C production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The eddy covariance technique provides measurements of net ecosystem exchange (NEE) Of CO2 between the atmosphere and terrestrial ecosystems, which is widely used to estimate ecosystem respiration and gross primary production (GPP) at a number Of CO2 eddy flux tower sites. In this paper, canopy-level maximum light use efficiency, a key parameter in the satellite-based Vegetation Photosynthesis Model (VPM), was estimated by using the observed CO2 flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites in an alpine swamp ecosystem, an alpine shrub ecosystem and an alpine meadow ecosystem in Qinghai-Tibetan Plateau, China. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)) derived from the Moderate Resolution Imaging Spectral radiometer (MODIS) data and climate data at the flux tower sites, and estimated the seasonal dynamics of GPP of the three alpine grassland ecosystems in Qinghai-Tibetan Plateau. The seasonal dynamics of GPP predicted by the VPM model agreed well with estimated GPP from eddy flux towers. These results demonstrated the potential of the satellite-driven VPM model for scaling-up GPP of alpine grassland ecosystems, a key component for the study of the carbon cycle at regional and global scales. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured the net ecosystem CO2 exchange (NEE) in an alpine meadow ecosystem (latitude 37degrees29'-45'N, longitude 101degrees12'-23'E, 3250 m above sea level) on the Qinghai-Tibetan Plateau throughout 2002 by the eddy covariance method to examine the carbon dynamics and budget on this unique plateau. Diurnal changes in gross primary production (GPP) and ecosystem respiration (R-e) showed that an afternoon increase of NEE was highly associated with an increase of R-e. Seasonal changes in GPP corresponded well to changes in the leaf area index and daily photosynthetic photon flux density. The ratio of GPP/R-e was high and reached about 2.0 during the peak growing season, which indicates that mainly autotrophic respiration controlled the carbon dynamics of the ecosystem. Seasonal changes in mean GPP and R-e showed compensatory behavior as reported for temperate and Mediterranean ecosystems, but those of GPP(max) and R-emax were poorly synchronized. The alpine ecosystem exhibited lower GPP (575 g C m(-2) y(-1)) than, but net ecosystem production (78.5 g C m(-2) y(-1)) similar to, that of subalpine forest ecosystems. The results suggest that the alpine meadow behaved as a CO2 sink during the 1-year measurement period but apparently sequestered a rather small amount of C in comparison with similar alpine ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-stage process with temperature-shift has been developed to enhance the anthocyanin yield in suspension cultures of strawberry cells. The effect of the temperature-shift interval and the shift-time point was investigated for the optimization of this strategy. In this process, strawberry cells were grown at 30 degrees C (the optimum temperature for cell growth) for a certain period as the first stage, with the temperature shifted to a lower temperature for the second stage. In response to the temperature shift-down, anthocyanin synthesis was stimulated and a higher content could be achieved than that at both boundary temperatures but cell growth was suppressed. When the lower boundary temperature was decreased, cell growth was lowered and a delayed, sustained maximum anthocyanin content was achieved. Anthocyanin synthesis was strongly influenced by the shift-time point but cell growth was not. Consequently, the maximum anthocyanin content of 2.7 mg.g-fresh cell(-1) was obtained on day 9 by a temperature-shift from 30 degrees C, after 3-d culture, to 15 degrees C. The highest anthocyanin yield of 318 mg.L-1 on day 12 was achieved when the temperature was shifted from 30 degrees C, after 5-d culture, to 20 degrees C. For a global optimization of both the yield and productivity, the optimum anthocyanin yield and productivity of 272 mg.L-1 and 30.2 mg.L-1.d(-1) on day 9 were achieved by a two-stage culture with a temperature-shift from 30 degrees C after 3 d to 20 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Naphtha catalytic cracking were carried out at 650 degrees C over modified ZSM-5. Light olefins and BTX could be obtained over the catalysts. The products showed variable distribution with different catalyst modification. Some modification, such as Fe, Cu and La favored the BTX generation and P and Mg modification favored the light olefins production. In N-2 stream cracking catalyzed by LaZSM-5, more than 50% naphtha feed were converted to BTX, while in steam cracking, with an improved modified catalyst, P, La/ZSM-5, naphtha can be converted to light olefins with high activity and long-term stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HSAPO-34 molecular sieve was employed in chloromethane conversion and showed high performance in activity and selectivity in production of light olefins. Our detailed IR investigation allowed the identification of the active sites and the adsorbed species and demonstrated that the conversion started from 350 degrees C with alkoxy group as the intermediate. The fixed-bed catalytic testing evidenced that in the range of 350-500 degrees C, 70-80% of chloromethane was transferred to ethylene, propylene and butenes. Increasing reaction temperature favors the conversion and enhances the yield of lighter olefins. A very important reversible phenomenon, the breaking of Al-O-P bonds upon adsorption of HCl, a main product of reaction to generate a large amount of P-OH groups and the recovery of Al-O-P upon removal of HCI was revealed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C-reactive protein (CRP) is the prototypic human acute-phase protein and is found at increased levels in the blood during episodes of inflammation. CRP was generally thought to be produced only by hepatocytes; however, several studies have shown extrahepatic synthesis of CRP. A previous study showed that PM10 and ultrafine carbon black (ufCB) were able to induce CRP expression in A549 cells. This study aims to examine the factors that lead to the production of CRP in A549 cells. A549 human lung epithelial cells were treated with cytokines (interleukin 6, tumor necrosis factor , interferon , or interleukin 1) or carbon particles (CB and ufCB) for 18 h. It was found that CRP could be expressed within the cells and that CRP was secreted from the cells particularly with tumor necrosis factor , CB and ufCB treatments. It was also found that this expression of CRP with CB and ufCB treatments was dependent on nuclear factor kappa B (NFB). The expression of CRP in A549 cells may indicate an important role for CRP expression and secretion from lung epithelial cells in response to inflammatory stimuli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durbin, J., Urquhart, C. & Yeoman, A. (2003). Evaluation of resources to support production of high quality health information for patients and the public. Final report for NHS Research Outputs Programme. Aberystwyth: Department of Information Studies, University of Wales Aberystwyth. Sponsorship: Department of Health

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Winter, Rudolf; Jones, A.R.; Greaves, G.N.; Smith, I.H., (2005) 'Na-23, Si-29, and C-13 MAS NMR investigation of glass-forming reactions between Na2CO3 and SiO2', Journal of Physical Chemistry B 109(49) pp.23154-23161 RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The very common GNB3 c.825C>T polymorphism (rs5443), is present in approximately half of all human chromosomes. Significantly the presence of the GNB3 825T allele has been strongly associated, with predisposition to essential hypertension. Paradoxically the presence of the GNB3 825T allele, in exon 10, introduces a pathogenic alternative RNA splice site into the middle of exon 9. To attempt to correct this pathogenic aberrant splicing, we therefore bioinformatically designed, using a Gene Tools® algorithm, a GNB3 specific, antisense morpholino. It was hoped that this morpholino would behave in vitro as either a potential “ splice blocker and/or exon skipper, to both bind and inhibit/reduce the aberrant splicing of the GNB3, 825T allele. On transfecting a human lymphoblast cell line homozygous for the 825T allele, with this antisense morpholino, we encouragingly observed both a significant reduction (from ~58% to ~5%) in the production of the aberrant smaller GNB3 transcript, and a subsequent increase in the normal GNB3 transcript (from ~42% to ~95%). Our results demonstrate the potential use of a GNB3 specific antisense morpholino, as a pharmacogenetic therapy for essential hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anaerobic digestion (AD) of biodegradable waste is an environmentally and economically sustainable solution which incorporates waste treatment and energy recovery. The organic fraction of municipal solid waste (OFMSW), which comprises mostly of food waste, is highly degradable under anaerobic conditions. Biogas produced from OFMSW, when upgraded to biomethane, is recognised as one of the most sustainable renewable biofuels and can also be one of the cheapest sources of biomethane if a gate fee is associated with the substrate. OFMSW is a complex and heterogeneous material which may have widely different characteristics depending on the source of origin and collection system used. The research presented in this thesis investigates the potential energy resource from a wide range of organic waste streams through field and laboratory research on real world samples. OFMSW samples collected from a range of sources generated methane yields ranging from 75 to 160 m3 per tonne. Higher methane yields are associated with source segregated food waste from commercial catering premises as opposed to domestic sources. The inclusion of garden waste reduces the specific methane yield from household organic waste. In continuous AD trials it was found that a conventional continuously stirred tank reactor (CSTR) gave the highest specific methane yields at a moderate organic loading rate of 2 kg volatile solids (VS) m-3 digester day-1 and a hydraulic retention time of 30 days. The average specific methane yield obtained at this loading rate in continuous digestion was 560 ± 29 L CH4 kg-1 VS which exceeded the biomethane potential test result by 5%. The low carbon to nitrogen ratio (C: N <14:1) associated with canteen food waste lead to increasing concentrations of volatile fatty acids in line with high concentrations of ammonia nitrogen at higher organic loading rates. At an organic loading rate of 4 kg VS m-3day-1 the specific methane yield dropped considerably (381 L CH4 kg-1 VS), the pH rose to 8.1 and free ammonia (NH3 ) concentrations reached toxicity levels towards the end of the trial (ca. 950 mg L-1). A novel two phase AD reactor configuration consisting of a series of sequentially fed leach bed reactors connected to an upflow anaerobic sludge blanket (UASB) demonstrated a high rate of organic matter decay but resulted in lower specific methane yields (384 L CH4 kg-1 VS) than the conventional CSTR system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The landscape of late medieval Ireland, like most places in Europe, was characterized by intensified agricultural exploitation, the growth and founding of towns and cities and the construction of large stone edifices, such as castles and monasteries. None of these could have taken place without iron. Axes were needed for clearing woodland, ploughs for turning the soil, saws for wooden buildings and hammers and chisels for the stone ones, all of which could not realistically have been made from any other material. The many battles, waged with ever increasingly sophisticated weaponry, needed a steady supply of iron and steel. During the same period, the European iron industry itself underwent its most fundamental transformation since its inception; at the beginning of the period it was almost exclusively based on small furnaces producing solid blooms and by the turn of the seventeenth century it was largely based on liquid-iron production in blast-furnaces the size of a house. One of the great advantages of studying the archaeology of ironworking is that its main residue, slag, is often produced in copious amounts both during smelting and smithing, is virtually indestructible and has very little secondary use. This means that most sites where ironworking was carried out are readily recognizable as such by the occurrence of this slag. Moreover, visual examination can distinguish between various types of slag, which are often characteristic for the activity from which they derive. The ubiquity of ironworking in the period under study further means that we have large amounts of residues available for study, allowing us to distinguish patterns both inside assemblages and between sites. Disadvantages of the nature of the remains related to ironworking include the poor preservation of the installations used, especially the furnaces, which were often built out of clay and located above ground. Added to this are the many parameters contributing to the formation of the above-mentioned slag, making its composition difficult to connect to a certain technology or activity. Ironworking technology in late medieval Ireland has thus far not been studied in detail. Much of the archaeological literature on the subject is still tainted by the erroneous attribution of the main type of slag, bun-shaped cakes, to smelting activities. The large-scale infrastructure works of the first decade of the twenty-first century have led to an exponential increase in the amount of sites available for study. At the same time, much of the material related to metalworking recovered during these boom-years was subjected to specialist analysis. This has led to a near-complete overhaul of our knowledge of early ironworking in Ireland. Although many of these new insights are quickly seeping into the general literature, no concise overviews on the current understanding of the early Irish ironworking technology have been published to date. The above then presented a unique opportunity to apply these new insights to the extensive body of archaeological data we now possess. The resulting archaeological information was supplemented with, and compared to, that contained in the historical sources relating to Ireland for the same period. This added insights into aspects of the industry often difficult to grasp solely through the archaeological sources, such as the people involved and the trade in iron. Additionally, overviews on several other topics, such as a new distribution map of Irish iron ores and a first analysis of the information on iron smelting and smithing in late medieval western Europe, were compiled to allow this new knowledge on late medieval Irish ironworking to be put into a wider context. Contrary to current views, it appears that it is not smelting technology which differentiates Irish ironworking from the rest of Europe in the late medieval period, but its smithing technology and organisation. The Irish iron-smelting furnaces are generally of the slag-tapping variety, like their other European counterparts. Smithing, on the other hand, is carried out at ground-level until at least the sixteenth century in Ireland, whereas waist-level hearths become the norm further afield from the fourteenth century onwards. Ceramic tuyeres continue to be used as bellows protectors, whereas these are unknown elsewhere on the continent. Moreover, the lack of market centres at different times in late medieval Ireland, led to the appearance of isolated rural forges, a type of site unencountered in other European countries during that period. When these market centres are present, they appear to be the settings where bloom smithing is carried out. In summary, the research below not only offered us the opportunity to give late medieval ironworking the place it deserves in the broader knowledge of Ireland's past, but it also provided both a base for future research within the discipline, as well as a research model applicable to different time periods, geographical areas and, perhaps, different industries..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biogas production is the conversion of the organic material into methane (CH4) and carbon dioxide (CO2) under anaerobic conditions. Anaerobic digestion (AD) is widely used in continental and Scandinavian communities as both a waste treatment option and a source of renewable energy. Ireland however lags behind this European movement. Numerous feedstocks exist which could be digested and used to fuel a renewable transport fleet in Ireland. An issue exists with the variety of feedstocks; these need to be assessed and quantified to ascertain their potential resource and application to AD. From literature the ideal C:N ratio is between 25 and 30:1. Low levels of C:N (<15) can lead to problems with ammonia inhibition. Within the digester a plentiful supply of nutrients and a balanced C:N is required for stable performance. Feedstocks were sampled from a range of over 100 different substrates in Ireland including for first, second and third generation feedstocks. The C:N ranged from 81:1 (Winter Oats) to 7:1 (Silage Effluent). The BMP yields were recorded ranging from 38 ± 2.0 L CH4 kg−1 VS for pig slurry (weaning pigs) to 805 ± 57 L CH4 kg−1 VS for used cooking oil (UCO). However the selection of the best preforming feedstock in terms of C:N ratio or BMP yield alone is not sufficiently adequate. A total picture has to be created which includes C:N ratio, BMP yield, harvest yield and availability. Potential feedstocks which best meet these requirements include for Grass silage, Milk processing waste (MPW) and Saccharina latissima. MPW has a potential of meeting over 6 times the required energy for Ireland’s 2020 transport in energy targets. S. Latissima recorded a yield of over 10,000 GJ ha-1 yr-1 which out ranks traditional second generation biofuels by a factor of more than 4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a new bioprocess requires several steps from initial concept to a practical and feasible application. Industrial applications of fungal pigments will depend on: (i) safety of consumption, (ii) stability of the pigments to the food processing conditions required by the products where they will be incorporated and (iii) high production yields so that production costs are reasonable. Of these requirements the first involves the highest research costs and the practical application of this type of processes may face several hurdles until final regulatory approval as a new food ingredient. Therefore, before going through expensive research to have them accepted as new products, the process potential should be assessed early on, and this brings forward pigment stability studies and process optimisation goals. Only ingredients that are usable in economically feasible conditions should progress to regulatory approval. This thesis covers these two aspects, stability and process optimisation, for a potential new ingredient; natural red colour, produced by microbial fermentation. The main goal was to design, optimise and scale-up the production process of red pigments by Penicillium purpurogenum GH2. The approach followed to reach this objective was first to establish that pigments produced by Penicillium purpurogenum GH2 are sufficiently stable under different processing conditions (thermal and non-thermal) that can be found in food and textile industries. Once defined that pigments were stable enough, the work progressed towards process optimisation, aiming for the highest productivity using submerged fermentation as production culture. Optimum production conditions defined at flask scale were used to scale up the pigment production process to a pilot reactor scale. Finally, the potential applications of the pigments were assessed. Based on this sequence of specific targets, the thesis was structured in six parts, containing a total of nine chapters. Engineering design of a bioprocess for the production of natural red colourants by submerged fermentation of the thermophilic fungus Penicillium purpurogenum GH2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by polyclonal B cell activation and by the production of anti-double-stranded (ds) DNA antibodies. Given the inhibitory effects of IL-12 on humoral immune responses, we investigated whether IL-12 displayed such an activity on in vitro immunoglobulin production by SLE PBMC. Spontaneous IgG, IgG1, IgG2, IgG3 and IgM antibody production was dramatically reduced by addition of IL-12. These results were confirmed by Elispot assays detecting IgG- and anti-dsDNA-secreting cells. While IL-6 and TNF titres measured in PBMC supernatants were not modified by addition of IL-12, interferon-gamma (IFN-gamma) titres were up-regulated and IL-10 production down-regulated. Since addition of IFN-gamma did not down-regulate immunoglobulin production and since the inhibitory activity of IL-12 on immunoglobulin synthesis was not suppressed by anti-IFN-gamma antibody, we concluded that the effect of IL-12 on immunoglobulin production was not mediated through IFN-gamma. Our data also argue against the possibility that down-regulation of endogenous IL-10 production was responsible for the effect of IL-12. Thus, inhibition of IL-10 production by IFN-gamma was not accompanied by inhibition of immunoglobulin production, and conversely, restoration of IL-10 production by anti-IFN-gamma antibody did not suppress the inhibitory activity exerted by IL-12 on immunoglobulin production. Taken together, our data indicate that reduction of excessive immunoglobulin and anti-dsDNA antibody production by lupus PBMC can be achieved in vitro by IL-12, independently of IFN-gamma and IL-10 modulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial lipopolysaccharide (endotoxin) is a frequent contaminant of biological specimens and is also known to be a potent inducer of beta-chemokines and other soluble factors that inhibit HIV-1 infection in vitro. Though lipopolysaccharide (LPS) has been shown to stimulate the production of soluble HIV-1 inhibitors in cultures of monocyte-derived macrophages, the ability of LPS to induce similar inhibitors in other cell types is poorly characterized. Here we show that LPS exhibits potent anti-HIV activity in phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs) but has no detectable anti-HIV-1 activity in TZM-bl cells. The anti-HIV-1 activity of LPS in PBMCs was strongly associated with the production of beta-chemokines from CD14-positive monocytes. Culture supernatants from LPS-stimulated PBMCs exhibited potent anti-HIV-1 activity when added to TZM-bl cells but, in this case, the antiviral activity appeared to be related to IFN-gamma rather than to beta-chemokines. These observations indicate that LPS stimulates PBMCs to produce a complex array of soluble HIV-1 inhibitors, including beta-chemokines and IFN-gamma, that differentially inhibit HIV-1 depending on the target cell type. The results also highlight the need to use endotoxin-free specimens to avoid artifacts when assessing HIV-1-specific neutralizing antibodies in PBMC-based assays.