951 resultados para cell-mediated immunity
Resumo:
The induction of granuloma formation by soluble egg antigens (SEA) of Schistosoma mansoni is accompanied by T cell-mediated lymphokine production that regulates the intensity of the response. In the present study we have examined the ability of SDS-PAGE fractioned SEA proteins to elicit granulomas and lymphokine production in infected and egg-immunized mice. At the acute stage of infection SEA fractions (<21, 25-30, 32-38, 60-66, 70-90, 93-125, and > 200 kD) that elicited pulmonary granulomas also elicited IL-2, IL-4 lymphokine production. At the chronic stage a diminished number of fractions (60-66, 70-90, 93-125, and > 200 kD) were able to elicit granulomas with an overall decrease in IL-2, IL-4 production. Granulomas were elicited by larval-egg crossreactive and egg-specific fractions at both the acute and chronic stage of the infection. Examination of lymphokine production from egg-immunized mice demonstrated that as early as 4 days IL-2 was produced by spleen cells stimulated with <21, 32-38, 40-46, 93-125, and >200 kD fractions. By 16 days, IL-2production was envoked by 8 of 9 fractions. IL-4 production at 4 days in response to all fractions was minimal while at 16 days IL-4 was elicited with the < 21, 25-30, 50-56, 93-125, and > 200 kD fractions. The present study reveals differences in the range of SEA fractions able to elicit granulomas and IL-2, IL-4 production between acute and chronic stages of infection. Additionally, this study demonstrates sequential (IL-2 followed by IL-4) lymphokine production during the primary egg antigen response.
Resumo:
Cytokines are important in the cell-mediated response to Schistosoma mansoni eggs. We have found that Th2 cytokine responses (e.G. IL-4 and IL-5) are argumented after egg laying begins while the response (IL-2 and IFN-*) are down regulated in S. mansoni infected mice. Treatment of mice with anti-IL-5 monoclonal antibodies (Mab) suppressed the eosinophil response almost completley but did not affect granuloma size and slightly increased hepatic fibrosis. Anti-IL-4 treatment abolished IgE responses in infected mice and decreased hepatic fibrosis slightly. Anti-IFN-* treatment had no effect on hepatic pathology. Anti-IL-2 treatment decreased granuloma size significantly and decreased hepatic fibrosis markedly. Anti-IL-2 treatment dramatically decreased IL-5 secretion by splenic cells in vitro and decreased peripheral blood and tissue eosinophilia. In contrast IL-4 secretion was unaffected and serum IgE was normal or increased. IL-2 and IFN-* secretion by splenic cells of treated mice were slightly but not significantly increased suggesting that anti-IL-2 treatment affecting Th2 rather than Th1 responses.
Resumo:
Infection with Schistosoma mansoni induces humoral and T cell mediated responses and leads to delayed hipersensitivity that results in granulomatous inflamatory disease around the parasite eggs. Regulation of these responses resulting in a reduction in this anti-egg inflamatory disease is appsrently determined by idiotypic repertoires of the patient, associated with genetic background and multiple external factors. We have previously reported on idiotype/anti-idiotype-receptor transactions in clinical human schistosomiasis. These findings support a hypothesis that anti-SEA cross-reactive idiotypes develop in some patients during the course of a chronic infection and participate in regulation of anti-SEA cellular immune responses. We repport here on experiments wich extend those observations to the regulation of granulomatous hypersensitivity measured by an in vitro granuloma model. T cells from chronic intestinal schistosomiasis patients were stimulated in vitro with anti-SEA idiotypes and assayed in an autologous in vitro granuloma assay for modulation of granuloma formation. These anti-SEA idiotype reactive T cells were capable of regulating autologous in vitro granuloma formation. This regulatory activity, initiated with stimulatory anti-SEA idiotypic antibodies, was antigenically specific and was dependent on the present of intact (F(ab')2 immunoglobulin molecules. The ability to elicit this regulatory activity appears to be dose dependent and is more easily demonstrated in chronically infected intestinal patients or SEA sensitized individuals. These data support the hypothesis that anti-SEA cross reactive idiotypes are important in regulating granulomatous hypersensitivy in chronic intestinal schistosomiasis patients and these cross-reactive idiotypes appear to play a major role in cell-cell interactions which result in the regulation of anti-SEA cellular immune responses.
Resumo:
Background: Experimental data have suggested that adoptive transfer of CD4+CD25+Foxp3+ regulatory T cells (Tregs), capable of controlling immune responses to specifi c auto- or alloantigens, could be used as a therapeutic strategy to promote specifi c tolerance in T-cell mediated diseases and in organ transplantation (Tx). However, before advocating the application of immunotherapy with Tregs in Tx, we need to improve our understanding of their in vivo homeostasis, traffi cking pattern and effector function in response to alloantigens. Methods : Donor-antigen specifi c murine Tregs were generated and characterized in vitro following our described protocols. Using an adoptive transfer and skin allotransplantation model, we have analyzed the in vivo expansion and homing of fl uorescent-labeled effector T cells (Teff) and Tregs, at different time-points after Tx, using fl ow-cytometry as well as fl uorescence microscopy techniques. Results: Tregs expressed CD62L, CCR7 and CD103 allowing their homing into lymphoid and non-lymphoid tissues (gut, skin) after intravenous injection. While hyporesponsive to TCR stimulation in vitro, transferred Tregs survived, migrated to secondary lymphoid organs and preferentially expanded within the allograft draining lymph nodes. Furthermore, Foxp3+ cells could be detected inside the allograft as early as day 3-5 after Tx. At a much later time-point (day 60 after Tx), graft-infi ltrating Foxp3+ cells were also detectable in tolerant recipients. When transferred alone, CD4+CD25- Teff cells expanded within secondary lymphoid organs and infi ltrated the allograft by day 3-5 after Tx. The co-transfer of Tregs limited the expansion of alloreactive Teff cells as well as their recruitment into the allograft. The promotion of graft survival observed in the presence of Tregs was in part mediated by the inhibition of the production of effector cytokines by CD4+CD25- T cells. Conclusion: Taken together, our results suggest that the suppression of allograft rejection and the induction of Tx tolerance are in part dependant on the alloantigendriven homing and expansion of Tregs. Thus, the appropriate localization of Tregs may be critical for their suppressive function in vivo.
Resumo:
Clinical and experimental investigations suggest that allergen-specific CD4+ T-cells, IgE and the cytokines IL-4 and IL-5 play central roles in initiating and sustaining an asthmatic response by regulating the recruitment and/or activation of airways mast cells and eosinophils. IL-5 plays a unique role in eosinophil development and activation and has been strongly implicated in the aetiology of asthma. The present paper summarizes our recent investigations on the role of these cytokines using cytokine knockout mice and a mouse aeroallergen model. Investigations in IL-5-/- mice indicate that this cytokine is critical for regulating aeroallergen-induced eosinophilia, the onset of lung damage and airways hyperreactivity during allergic airways inflammation. While IL-4 and allergen-specific IgE play important roles in the regulation of allergic disease, recent investigations in IL4-/- mice suggest that allergic airways inflammation can occur via pathways which operate independently of these molecules. Activation of these IL-4 independent pathways are also intimately associated with CD4+ T-cells, IL-5 signal transduction and eosinophilic inflammation. Such IL-5 regulated pathways may also play a substantive role in the aetiology of asthma. Thus, evidence is now emerging that allergic airways disease is regulated by humoral and cell mediated processes. The central role of IL-5 in both components of allergic disease highlights the requirements for highly specific therapeutic agents which inhibit the production or action of this cytokine.
Resumo:
Adenosine deaminase (ADA) activities in sera, lymphocytes and granulocytes in patients with cutaneous leishmaniasis were investigated and compared with control groups. Fifty patients and 50 healthy individuals were studied. The clinical diagnosis was parasitologically confirmed by culture and Giemsa stain. ADA activities were measured by colorimetric method. Serum ADA activities 37.80 ± 11.90, 18.28 ± 6.08 IU/L (p<0.0001), lymphocyte specific ADA activities 14.90 ± 7.42, 8.38 ± 7.42 U/mg protein (p = 0.04), granulocyte specific ADA activities 1.15 ± 0.73 , 1.09 ± 0.67 U/mg protein ( p>0.05) were found in patients and control groups, respectively. ADA activity increases in some infectious diseases were cell mediated immune mechanisms are dominant. In cutaneous leishmaniasis, lymphokine-mediated macrophage activity is the main effector mechanism. Increase in serum and lymphocyte ADA activities in patients with cutaneous leishmaniasis may be dependent on and reflects the increase in phagocytic activity of macrophages and maturation of T-lymphocytes.
Resumo:
Testosterone can benefit individual fitness by increasing ornament colour, aggressiveness, and sperm quality, but it can also impose both metabolic and immunological costs. However, evidence that testosterone causes immuno suppression in freely living populations is scant. We studied the effects of testosterone on one component of the immune system (i.e., the cell-mediated response to phytohaemagglutinin), parasite load, and metabolic rate in the common wall lizard, Podarcis muralis (Laurenti, 1768). For analyses of immunocompetence and parasitism, male lizards were implanted at the end of the breeding season with either empty or testosterone implants and were returned to their site of capture for 5-6 weeks before recapture. For analyses of the effects of testosterone on metabolic rate, male lizards were captured and implanted before hibernation and were held in the laboratory for 1 week prior to calorimetry. Experimental treatment with testosterone decreased the cell-mediated response to the T-cell mitogen phytohemagglutinin and increased mean metabolic rate. No effects of testosterone on the number of ectoparasites, hemoparasites, and resting metabolic rate could be detected. These results are discussed in the framework of the immunocompetence handicap hypothesis and the immuno-redistribution process hypothesis. [Authors]
Resumo:
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis whose interaction with the host may lead to a cell-mediated protective immune response. The presence of interferon-g (IFN-gamma) is related to this response. With the purpose of understanding the immunological mechanisms involved in this protection, the lymphoproliferative response, IFN-g and other cytokines like interleukin (IL-5, IL-10), and tumor necrosis factor alpha (TNF-a) were evaluated before and after the use of anti-TB drugs on 30 patients with active TB disease, 24 healthy household contacts of active TB patients, with positive purified protein derivative (PPD) skin tests (induration > 10 mm), and 34 asymptomatic individuals with negative PPD skin test results (induration < 5 mm). The positive lymphoproliferative response among peripheral blood mononuclear cells of patients showed high levels of IFN-g, TNF-a, and IL-10. No significant levels of IL-5 were detected. After treatment with rifampicina, isoniazida, and pirazinamida, only the levels of IFN-g increased significantly (p < 0.01). These results highlight the need for further evaluation of IFN-g production as a healing prognostic of patients treated.
Resumo:
Systhematized septal fibrosis of the liver can be induced in rats either by repeated intraperitoneal injections of pig-serum or by Capillaria hepatica infection. The relationship between these two etiological factors, as far as hepatic fibrosis is concerned, is not known, and present investigation attempts to investigate it. C. hepatica-induced septal fibrosis of the liver was considerably inhibited in rats previously rendered tolerant to pig-serum. Pig-serum-tolerant rats developed antibodies against pig-serum when infected with C. hepatica, but this did not happen when the infection occurred in normal rats. On the other hand, anti-C. hepatica antibodies failed to recognize any epitope in pig-serum, by Western blot. However, no evidence of an immunological cross reactivity was found, at least at the humoral level. Alternatively, cell-mediated mechanisms may be involved, and further investigations are warranted.
Resumo:
The pathogenesis of Schistosoma mansoni infection is largely determined by host T-cell mediated immune responses such as the granulomatous response to tissue deposited eggs and subsequent fibrosis. The major egg antigens have a valuable role in desensitizing the CD4+ Th cells that mediate granuloma formation, which may prevent or ameliorate clinical signs of schistosomiasis.S. mansoni major egg antigen Smp40 was expressed and completely purified. It was found that the expressed Smp40 reacts specifically with anti-Smp40 monoclonal antibody in Western blotting. Three-dimensional structure was elucidated based on the similarity of Smp40 with the small heat shock protein coded in the protein database as 1SHS as a template in the molecular modeling. It was figured out that the C-terminal of the Smp40 protein (residues 130 onward) contains two alpha crystallin domains. The fold consists of eight beta strands sandwiched in two sheets forming Greek key. The purified Smp40 was used for in vitro stimulation of peripheral blood mononuclear cells from patients infected with S. mansoni using phytohemagglutinin mitogen as a positive control. The obtained results showed that there is no statistical difference in interferon-g, interleukin (IL)-4 and IL-13 levels obtained with Smp40 stimulation compared with the control group (P > 0.05 for each). On the other hand, there were significant differences after Smp40 stimulation in IL-5 (P = 0.006) and IL-10 levels (P < 0.001) compared with the control group. Gaining the knowledge by reviewing the literature, it was found that the overall pattern of cytokine profile obtained with Smp40 stimulation is reported to be associated with reduced collagen deposition, decreased fibrosis, and granuloma formation inhibition. This may reflect its future prospect as a leading anti-pathology schistosomal vaccine candidate.
Resumo:
The activation, or maturation, of dendritic cells (DCs) is crucial for the initiation of adaptive T-cell mediated immune responses. Research on the molecular mechanisms implicated in DC maturation has focused primarily on inducible gene-expression events promoting the acquisition of new functions, such as cytokine production and enhanced T-cell-stimulatory capacity. In contrast, mechanisms that modulate DC function by inducing widespread gene-silencing remain poorly understood. Yet the termination of key functions is known to be critical for the function of activated DCs. Genome-wide analysis of activation-induced histone deacetylation, combined with genome-wide quantification of activation-induced silencing of nascent transcription, led us to identify a novel inducible transcriptional-repression pathway that makes major contributions to the DC-maturation process. This silencing response is a rapid primary event distinct from repression mechanisms known to operate at later stages of DC maturation. The repressed genes function in pivotal processes--including antigen-presentation, extracellular signal detection, intracellular signal transduction and lipid-mediator biosynthesis--underscoring the central contribution of the silencing mechanism to rapid reshaping of DC function. Interestingly, promoters of the repressed genes exhibit a surprisingly high frequency of PU.1-occupied sites, suggesting a novel role for this lineage-specific transcription factor in marking genes poised for inducible repression.
Resumo:
In murine schistosomiasis mansoni, pronounced CD4 T cell-mediated, egg-induced, hepato-intestinal immunopathology and death, whether genetically determined or elicited experimentally, are associated with failure to down-regulate a net pro-inflammatory immune response. Important evidence contributing to this notion comes from the observation that immunization with schistosome egg antigens in CFA (SEA/CFA) causes low pathology C57BL/6 mice to develop an exacerbated form of disease and death in a cytokine milieu characterized by elevated interferon (IFN)-gamma levels. Since such a pro-inflammatory environment presumes a signaling pathway involving interleukin (IL)-12, the SEA/CFA immunization model was used to examine the extent of hepatic immunopathology in the absence of this cytokine. Surprisingly, the IL-12p40 subunit was an absolute requirement for the development of exacerbated disease, whereas the IL-12p35 subunit was not. Moreover, significantly elevated in vitro production of IL-17, but not of IFN-gamma, correlated with the high pathology, and neutralization of IL-17 in vivo resulted in a significant reduction of hepatic inflammation. Our findings clearly demonstrate the pathogenic potential of the novel IL-17-producing T cell subpopulation (ThIL-17), previously shown to mediate chronic inflammation in autoimmune disease. They also imply that IL-23, but not IL-12, is the critical signal necessary to support the pro-inflammatory ThIL-17 subset involved in high pathology schistosomiasis.
Resumo:
BACKGROUND: Tumor necrosis factor/tumor necrosis factor receptor superfamily members conform a group of molecular interaction pathways of essential relevance during the process of T-cell activation and differentiation toward effector cells and particularly for the maintenance phase of the immune response. Specific blockade of these interacting pathways, such as CD40-CD40L, contributes to modulate the deleterious outcome of allogeneic immune responses. We postulated that antagonizing the interaction of LIGHT expression on activated T cells with its receptors, herpesvirus entry mediator and lymphotoxin β receptor, may decrease T cell-mediated allogeneic responses. METHODS: A flow cytometry competition assay was designed to identify anti-LIGHT monoclonal antibodies capable to prevent the interaction of mouse LIGHT with its receptors expressed on transfected cells. An antibody with the desired specificity was evaluated in a short-term in vivo allogeneic cytotoxic assay and tested for its ability to detect endogenous mouse LIGHT. RESULTS: We provide evidence for the first time that in mice, as previously described in humans, LIGHT protein is rapidly and transiently expressed after T-cell activation, and this expression was stronger on CD8 T cells than on CD4 T cells. Two anti-LIGHT antibodies prevented interactions of mouse LIGHT with its two known receptors, herpesvirus entry mediator and lymphotoxin β receptor. In vivo administration of anti-LIGHT antibody (clone 10F12) ameliorated host antidonor short-term cytotoxic response in wild type B6 mice, although to a lesser extent than that observed in LIGHT-deficient mice. CONCLUSION: The therapeutic targeting of LIGHT may contribute to achieve a better control of cytotoxic responses refractory to current immunosuppressive drugs in transplantation.
Resumo:
Leishmaniasis causes significant morbidity and mortality, constituting an important global health problem for which there are few effective drugs. Given the urgent need to identify a safe and effective Leishmania vaccine to help prevent the two million new cases of human leishmaniasis worldwide each year, all reasonable efforts to achieve this goal should be made. This includes the use of animal models that are as close to leishmanial infection in humans as is practical and feasible. Old world monkey species (macaques, baboons, mandrills etc.) have the closest evolutionary relatedness to humans among the approachable animal models. The Asian rhesus macaques (Macaca mulatta) are quite susceptible to leishmanial infection, develop a human-like disease, exhibit antibodies to Leishmania and parasite-specific T-cell mediated immune responses both in vivo and in vitro, and can be protected effectively by vaccination. Results from macaque vaccine studies could also prove useful in guiding the design of human vaccine trials. This review summarizes our current knowledge on this topic and proposes potential approaches that may result in the more effective use of the macaque model to maximize its potential to help the development of an effective vaccine for human leishmaniasis.
Resumo:
Although parasite-mediated host cell lysis is deemed to be an important cause of tissue destruction in ocular toxoplasmosis (OT), the severity of the disease is probably correlated with hypersensitivity and inflammation. Notwithstanding, the mechanisms that regulate the inflammatory process in recurrent OT are poorly understood. Recent evidence has identified interleukin (IL) 17 as a marker for disease severity. The ocular and cerebral presence of this cytokine is generally associated with the induction of autoimmune responses in the brain and the eye. Indeed, there are indications that autoimmunity may contribute to clinical variability in the activity of OT. IL-23, which induces the proliferation of IL-17-producing cells and IL-27, which is a counterplayer to IL-17, may regulate T(H)-1-cell-mediated responses in OT. The importance of these cytokines in experimental models of uveitis and encephalitis has been recently reported. CD25(+) regulatory T-cells may control the local inflammatory response and protect the host against collateral inflammatory tissue damage. The responses of these cells to OT may be suitably tailored to cope with either an acquired or a congenital aetiology. Knowledge relating to immunoreactivity in OT has grown impressively during the past few years. Its characteristic and variable features have been identified and the potential relevance of autoimmunity has been assessed. In light of this knowledge, potential future treatment options have been considered.