981 resultados para catalytic
Resumo:
Hydrotalcite-like compounds (HTLcs) CoMAlCO3, where M stands for Cr, Mn, Ni, Cu, or Fe, were synthesized by coprecipitation. After calcination at 450 degrees C, they became mixed oxides with spinel-like structure. The mixed oxides were characterized by XRD, BET, chemical analysis and the adsorption of NO. The catalytic decomposition of NO and its reduction by CO were studied over these mixed oxides. The study showed that the catalytic activity for removal of NO, was very high. The reaction mechanism is proposed and the effects of d-electrons of the transition metals on catalytic activity are elucidated.
Resumo:
The mixed oxide La2CuO4 was synthesized by four different methods and characterized with XRD, BET, TEM and low angle XRD. The effect of the synthetic method on the crystal structure, crystal size, surface area and catalytic activity to NO - CO reaction were studied. The results showed that the samples derived from different methods exhibited different activity to NO-CO reaction, the reason may be that the concentration and type of oxygen defect were different when the synthetic methods were different.
Resumo:
Polyaniline is prepared by chemical polymerization of aniline in an acidic solution using H2O2 as an oxidant and ferrous chloride as a catalyst. A wide variety of synthesis parameters are studied, such as the amount of the catalyst, reaction temperature, reaction time, initial molar ratio of oxidant, monomer and catalyst, and aniline and HCl concentrations. The polymerization of aniline can be initiated by a very small amount of catalyst. The yield and the conductivity of product depend on the initial molar ratio of the oxidant and monomer. The polyaniline with a conductivity of about 10 degrees S/cm and a yield of 60% is prepared under optimum conditions. The process of polymerization was studied by in situ ultraviolet-visible spectroscopy and open-circuit potential technology. Compared to the polymerization process in a (NH4)(2)S2O8 system, the features of the H2O2-Fe2+ system are pointed out, and the chain growth mechanism is proposed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Catalysts with spinel structure derived from Hydrotalcite-like Compounds (HTLcs) containing cobalt have been investigated in NO catalytic reduction by Co. It was found that catalysts with spinel structures derived from HTLcs had obviously higher activity than that prepared from general methods. A two-step reaction was observed during the reaction curse: NO was first reduced to N2O by Co, and with the increase of temperature, the N2O was reduced to N-2. The reactivity of the catalysts studied increased with the amount of cobalt-content in the catalyst, and decreased with the calcination temperature. The crystal defect would play an important role in the reaction.
Resumo:
The activities of perovskites depend on compositions and preparation methods. Various perovskites, La1-xMxMnO3 (M=Ag, Sr, Ce, La), have been prepared by two different methods (co-precipitation and spray decomposition). The new preparation method, spray decomposition, produced perovskites of a high surface area of over 10 m(2)/g. The catalytic activities for CH4 and CO oxidation have been studied on a series of catalysts, La1-xMxMnO3. The perovskite-type oxide, La0.7Ag0.3MnO3, shows the highest catalytic activity: the complete conversion of CO and CH4 at 370 and 825 K, respectively. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The thiol group of glutathione (GSH) was protected by 2,4-dinitrochlorobenzene (DNCB), the product S-substituted dinitrophenyl GSH(GSH-S-DNP) was alcoholized to obtain haptenes 4 and 5 respectively. As haptenes, the two GSH derivatives were characterized by means of H-1 NMR, MALDI-TOF-MS and IR, followed by individually coupling with bovine serum albumin (BSA) via glutaraldehyde. BSB-Hp4 and BSA-Hp5 were purified by Sephadex G-25 gel filtration chromatography. For each conjugate, the average haptene-BSA ratio was 12 : 1. The electrophoresis analysis showed that the average molecular weight of each conjugate was 76 500. The CD spectrum indicated that the conjugates had more a-helix content than BSA did.
Resumo:
The complexes of a series of rare earths with Ge-132 have been prepared. The carboxyl anions of Ge-132 molecule were coordinated to rare earth ion with chelate style. In the complexes molecule, the GeO3/2 group of Ge-132 were hydrolyzed to become -Ge(OH)(3) group, and later does:not coordinate with rare earth ions. All of the complexes possess similar properties. In aqueous solution of pH 6 and 50 degrees C, these complexes can obviously selectively catalytically hydrolize the phosphatide bond of 5'-AMP and 5'-dAMP into phosphatic acid and riboside.
Synthesis, characterisation and catalytic activity of propionamide complexes of rare earth chlorides
Resumo:
Propionamide complexes of rare earth chlorides were synthesized, Formula of the complexes is LnCl(3). 3BA. The ligand is shown to behave as a normal amide donor With the oxygen of the carbonyl group coordinated to the metal ions. Binary system composed Elf propionamide and aluminum alkyl shows higher activity and stereospecificity for butadiene polymerization. The cis-1,4 content of polybutadiene is more than 98%.
Resumo:
A series of sample having the stoichiometry La4BaCu5-xMnxO12 (x = 0 similar to 5) were prepared, characterized by XRD, IR and H-2 - TPR and used as catalyst for NO + CO reaction. It was found that they have 5 - layered ABO(3) - type structure. The results of H-2 - TPR showed that the Cu ion was more easily reduced while a part of them was replaced by Mn ions. Their catalytic behavior to NO + CO reaction was investigate, La4BaCu2Mn3O12 showed the highest catalyst activity for the reaction than the others. The reaction mechanism is discussed:the activity of the catalysts could be attributed to the Cu ions, but it was improved when Mn ions took the place of some Cu ions.
Resumo:
A selenium-containing catalytic antibody (Se-4A4), prepared by converting reactive serine residues of a monoclonal antibody (4A4) raised against a GSH derivative into selenocysteines, acts as a mimic of cytosolic glutathione peroxidase (cGPX). To clarify the mechanism of action of this catalytic antibody, detailed studies on kinetic behaviour and biological activity were carried out. A rate of acceleration (k(cat)/K-m/k(uncat)) 10(7)-fold that of the uncatalytic reaction is observed. Under similar conditions, the turnover number (k(cat)) of Se-4A4 is 42% of that of the natural rabbit liver cGPX. The Se-4A4 reaction involves a Ping Pong mechanism, which is the same as that of the natural cGPX. The selenocysteine residue is located in the binding site of the antibody and is shown to be crucial for this activity. Of the thiol compounds tested, only GSH is able to serve as substrate for Se-4A4. It was demonstrated, using the free-radical-damage system (hypoxanthine/xanthine oxidase) of cardiac mitochondria, that Se-4A4 can protect mitochondria from free-radical damage at least 10(4)-fold more effectively than the natural cGPX.
Resumo:
A series of LnSrNiO(4)(A(2)BO(4), Ln = La, Pr, Nd, Sm, Gd) mixed oxides with K2NiF4 structure, in which A-site(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physico-chemical properties including crystal structure, defect structure, IR spectrum, valence state of H-site ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 degrees C the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at A-site on catalytic behavior for NO decomposition was elucidated.
Resumo:
The catalytic oxidation of cyclohexene to cyclohexanone using Pd(OAc)(2)/HQ/FePc was investigated in an acidic aqueous solution of acetonitrile. The role of each component of this system in the oxidation of cyclohexene was explored by means of UV-VIS, IR, XPS spectroscopy and. cyclic voltammetry, respectively. Based on the experimental results, the mechanism of the oxidation of cyclohexene catalyzed by Pd(OAc)(2)/HQ/FePc was elucidated.
Resumo:
Two mixed oxide systems La2-xSrxCuO4+/-lambda(0.0 less than or equal to x less than or equal to 1.0) and La2+xThxCuO4+/-lambda(0.0 less than or equal to x less than or equal to 0.4) with K2NiF4 structure were prepared by varying re values; Their crystal structures were studied by means of XRD and IR spectra. The average valence of Cu ion at B site, nonstoichiometric oxygen (A) and the chemical composition in the bulk and on the surface of the catalysts were measured by means of chemical analysis and XPS. The catalytic behavior in reaction CO + NO was investigated under the regular change of average valence of Cu ion at B site and nonstoichiometric oxygen (lambda). Meanwhile, the adsorption and activation of the small molecules NO and the mixture of NO + CO over the mixed oxide catalysts were studied by means of MS-TPD. The catalytic mechanism of reaction NO + CO over these oxide catalysts were proposed; and it has been found that, at lower temperatures the activation of NO is the rate determining step and the catalytic activity is related to the lower valent metallic ion and its concentration, while at higher temperatures the adsorption of NO is the rate determining step and the catalytic activity is related to the oxygen vacancy and its concentration.
Resumo:
The catalytic mechanisms of triphenyl bismuth (TPB), dibutyltin dilaurate (DBTDL) and their combination have been studied in a model polyurethane reaction system consisting of copolyether (tetrahydrofuran-ethyleneoxide) and N-100; NMR spectroscopy was used to detect the associations between reactants and catalysts. A relatively stable complex was shown to be formed between hydroxyl and isocyanate; the catalysts showed different effects on the isocyanate-hydroxyl complex, therefore resulting in different curing characteristics. The formation of hydrogen bonding between the complexed hydroxyl and other hydroxyl or the resulting urethane provided an ''auto-catalysis'' to urethane formation. DBTDL destroyed the isocyanate-hydroxyl complex before catalyzing the reaction through the formation of a ternary complex, whereas TPB was able to activate the isocyanate-hydroxyl complex directly to form urethane. The reaction catalyzed by the combination of TPB and DBTDL gained advantages from the multiple catalytic entities, i.e., TPB, DBTDL, and a TPB-DBTDL complex. (C) 1997 John Wiley & Sons, Inc.
Resumo:
A series of Sr2+ doped perovskite like oxides La2-xSrxCuO4-lambda (x = 0 similar to 1) were prepared, the structure, lattice parameters, content of Cu3+, oxygen vacancies created by Sr2+ substitution and composition of these complex oxides were studied by XRD and iodic titration method. The redox ability,active oxygen species and surface image were evaluated and analyzed with TPD, TG, XPS and SEM measurements. The catalytic activity for ammonia oxidation over these oxides was tested, and the relationship among the catalytic properties, structure, nonstoichiometric oxygen,redox ability and surface behavior were correlated and some information on the mechanism of ammonia oxidation was obtained.